Primitive. The name Eps_i is a term of type (setprop)set.
Axiom. (Eps_i_ax) We take the following as an axiom:
∀P : setprop, ∀x : set, P xP (Eps_i P)
Definition. We define True to be ∀p : prop, pp of type prop.
Definition. We define False to be ∀p : prop, p of type prop.
Definition. We define not to be λA : propAFalse of type propprop.
Notation. We use ¬ as a prefix operator with priority 700 corresponding to applying term not.
Definition. We define and to be λA B : prop∀p : prop, (ABp)p of type proppropprop.
Notation. We use as an infix operator with priority 780 and which associates to the left corresponding to applying term and.
Definition. We define or to be λA B : prop∀p : prop, (Ap)(Bp)p of type proppropprop.
Notation. We use as an infix operator with priority 785 and which associates to the left corresponding to applying term or.
Definition. We define iff to be λA B : propand (AB) (BA) of type proppropprop.
Notation. We use as an infix operator with priority 805 and no associativity corresponding to applying term iff.
Beginning of Section Eq
Variable A : SType
Definition. We define eq to be λx y : A∀Q : AAprop, Q x yQ y x of type AAprop.
Definition. We define neq to be λx y : A¬ eq x y of type AAprop.
End of Section Eq
Notation. We use = as an infix operator with priority 502 and no associativity corresponding to applying term eq.
Notation. We use as an infix operator with priority 502 and no associativity corresponding to applying term neq.
Beginning of Section FE
Variable A B : SType
Axiom. (func_ext) We take the following as an axiom:
∀f g : AB, (∀x : A, f x = g x)f = g
End of Section FE
Beginning of Section Ex
Variable A : SType
Definition. We define ex to be λQ : Aprop∀P : prop, (∀x : A, Q xP)P of type (Aprop)prop.
End of Section Ex
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using ex.
Axiom. (prop_ext) We take the following as an axiom:
∀p q : prop, iff p qp = q
Primitive. The name In is a term of type setsetprop.
Notation. We use as an infix operator with priority 500 and no associativity corresponding to applying term In. Furthermore, we may write xA, B to mean x : set, xAB.
Definition. We define Subq to be λA B ⇒ ∀xA, x B of type setsetprop.
Notation. We use as an infix operator with priority 500 and no associativity corresponding to applying term Subq. Furthermore, we may write xA, B to mean x : set, xAB.
Axiom. (set_ext) We take the following as an axiom:
∀X Y : set, X YY XX = Y
Axiom. (In_ind) We take the following as an axiom:
∀P : setprop, (∀X : set, (∀xX, P x)P X)∀X : set, P X
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using ex and handling ∈ or ⊆ ascriptions using and.
Primitive. The name Empty is a term of type set.
Axiom. (EmptyAx) We take the following as an axiom:
¬ ∃x : set, x Empty
Primitive. The name is a term of type setset.
Axiom. (UnionEq) We take the following as an axiom:
∀X x, x X ∃Y, x Y Y X
Primitive. The name 𝒫 is a term of type setset.
Axiom. (PowerEq) We take the following as an axiom:
∀X Y : set, Y 𝒫 X Y X
Primitive. The name Repl is a term of type set(setset)set.
Notation. {B| xA} is notation for Repl Ax . B).
Axiom. (ReplEq) We take the following as an axiom:
∀A : set, ∀F : setset, ∀y : set, y {F x|xA} ∃xA, y = F x
Definition. We define TransSet to be λU : set∀xU, x U of type setprop.
Definition. We define Union_closed to be λU : set∀X : set, X U X U of type setprop.
Definition. We define Power_closed to be λU : set∀X : set, X U𝒫 X U of type setprop.
Definition. We define Repl_closed to be λU : set∀X : set, X U∀F : setset, (∀x : set, x XF x U){F x|xX} U of type setprop.
Definition. We define ZF_closed to be λU : setUnion_closed U Power_closed U Repl_closed U of type setprop.
Primitive. The name UnivOf is a term of type setset.
Axiom. (UnivOf_In) We take the following as an axiom:
∀N : set, N UnivOf N
Axiom. (UnivOf_TransSet) We take the following as an axiom:
∀N : set, TransSet (UnivOf N)
Axiom. (UnivOf_ZF_closed) We take the following as an axiom:
∀N : set, ZF_closed (UnivOf N)
Axiom. (UnivOf_Min) We take the following as an axiom:
∀N U : set, N UTransSet UZF_closed UUnivOf N U
Theorem. (andI)
∀A B : prop, ABA B
Proof:
Proof not loaded.
Theorem. (orIL)
∀A B : prop, AA B
Proof:
Proof not loaded.
Theorem. (orIR)
∀A B : prop, BA B
Proof:
Proof not loaded.
Theorem. (iffI)
∀A B : prop, (AB)(BA)(A B)
Proof:
Proof not loaded.
Theorem. (pred_ext)
∀P Q : setprop, (∀x, P x Q x)P = Q
Proof:
Proof not loaded.
Definition. We define nIn to be λx X ⇒ ¬ In x X of type setsetprop.
Notation. We use as an infix operator with priority 502 and no associativity corresponding to applying term nIn.
Theorem. (EmptyE)
∀x : set, x Empty
Proof:
Proof not loaded.
Theorem. (PowerI)
∀X Y : set, Y XY 𝒫 X
Proof:
Proof not loaded.
Theorem. (Subq_Empty)
∀X : set, Empty X
Proof:
Proof not loaded.
Theorem. (Empty_In_Power)
∀X : set, Empty 𝒫 X
Proof:
Proof not loaded.
Theorem. (xm)
∀P : prop, P ¬ P
Proof:
Proof not loaded.
Theorem. (FalseE)
False∀p : prop, p
Proof:
Proof not loaded.
Theorem. (andEL)
∀A B : prop, A BA
Proof:
Proof not loaded.
Theorem. (andER)
∀A B : prop, A BB
Proof:
Proof not loaded.
Beginning of Section PropN
Variable P1 P2 P3 : prop
Theorem. (and3I)
P1P2P3P1 P2 P3
Proof:
Proof not loaded.
Theorem. (and3E)
P1 P2 P3(∀p : prop, (P1P2P3p)p)
Proof:
Proof not loaded.
Theorem. (or3I1)
P1P1 P2 P3
Proof:
Proof not loaded.
Theorem. (or3I2)
P2P1 P2 P3
Proof:
Proof not loaded.
Theorem. (or3I3)
P3P1 P2 P3
Proof:
Proof not loaded.
Theorem. (or3E)
P1 P2 P3(∀p : prop, (P1p)(P2p)(P3p)p)
Proof:
Proof not loaded.
Variable P4 : prop
Theorem. (and4I)
P1P2P3P4P1 P2 P3 P4
Proof:
Proof not loaded.
Variable P5 : prop
Theorem. (and5I)
P1P2P3P4P5P1 P2 P3 P4 P5
Proof:
Proof not loaded.
Variable P6 : prop
Theorem. (and6I)
P1P2P3P4P5P6P1 P2 P3 P4 P5 P6
Proof:
Proof not loaded.
Variable P7 : prop
Theorem. (and7I)
P1P2P3P4P5P6P7P1 P2 P3 P4 P5 P6 P7
Proof:
Proof not loaded.
End of Section PropN
Theorem. (not_or_and_demorgan)
∀A B : prop, ¬ (A B)¬ A ¬ B
Proof:
Proof not loaded.
Theorem. (not_ex_all_demorgan_i)
∀P : setprop, (¬ ∃x, P x)∀x, ¬ P x
Proof:
Proof not loaded.
Theorem. (iffEL)
∀A B : prop, (A B)AB
Proof:
Proof not loaded.
Theorem. (iffER)
∀A B : prop, (A B)BA
Proof:
Proof not loaded.
Theorem. (iff_refl)
∀A : prop, A A
Proof:
Proof not loaded.
Theorem. (iff_sym)
∀A B : prop, (A B)(B A)
Proof:
Proof not loaded.
Theorem. (iff_trans)
∀A B C : prop, (A B)(B C)(A C)
Proof:
Proof not loaded.
Theorem. (eq_i_tra)
∀x y z, x = yy = zx = z
Proof:
Proof not loaded.
Theorem. (neq_i_sym)
∀x y, x yy x
Proof:
Proof not loaded.
Theorem. (Eps_i_ex)
∀P : setprop, (∃x, P x)P (Eps_i P)
Proof:
Proof not loaded.
Theorem. (prop_ext_2)
∀p q : prop, (pq)(qp)p = q
Proof:
Proof not loaded.
Theorem. (Subq_ref)
∀X : set, X X
Proof:
Proof not loaded.
Theorem. (Subq_tra)
∀X Y Z : set, X YY ZX Z
Proof:
Proof not loaded.
Theorem. (Empty_Subq_eq)
∀X : set, X EmptyX = Empty
Proof:
Proof not loaded.
Theorem. (Empty_eq)
∀X : set, (∀x, x X)X = Empty
Proof:
Proof not loaded.
Theorem. (UnionI)
∀X x Y : set, x YY Xx X
Proof:
Proof not loaded.
Theorem. (UnionE)
∀X x : set, x X∃Y : set, x Y Y X
Proof:
Proof not loaded.
Theorem. (UnionE_impred)
∀X x : set, x X∀p : prop, (∀Y : set, x YY Xp)p
Proof:
Proof not loaded.
Theorem. (PowerE)
∀X Y : set, Y 𝒫 XY X
Proof:
Proof not loaded.
Theorem. (Self_In_Power)
∀X : set, X 𝒫 X
Proof:
Proof not loaded.
Theorem. (dneg)
∀P : prop, ¬ ¬ PP
Proof:
Proof not loaded.
Theorem. (not_all_ex_demorgan_i)
∀P : setprop, ¬ (∀x, P x)∃x, ¬ P x
Proof:
Proof not loaded.
Theorem. (eq_or_nand)
or = (λx y : prop¬ (¬ x ¬ y))
Proof:
Proof not loaded.
Definition. We define exactly1of2 to be λA B : propA ¬ B ¬ A B of type proppropprop.
Theorem. (exactly1of2_I1)
∀A B : prop, A¬ Bexactly1of2 A B
Proof:
Proof not loaded.
Theorem. (exactly1of2_I2)
∀A B : prop, ¬ ABexactly1of2 A B
Proof:
Proof not loaded.
Theorem. (exactly1of2_E)
∀A B : prop, exactly1of2 A B∀p : prop, (A¬ Bp)(¬ ABp)p
Proof:
Proof not loaded.
Theorem. (exactly1of2_or)
∀A B : prop, exactly1of2 A BA B
Proof:
Proof not loaded.
Theorem. (ReplI)
∀A : set, ∀F : setset, ∀x : set, x AF x {F x|xA}
Proof:
Proof not loaded.
Theorem. (ReplE)
∀A : set, ∀F : setset, ∀y : set, y {F x|xA}∃xA, y = F x
Proof:
Proof not loaded.
Theorem. (ReplE_impred)
∀A : set, ∀F : setset, ∀y : set, y {F x|xA}∀p : prop, (∀x : set, x Ay = F xp)p
Proof:
Proof not loaded.
Theorem. (ReplE')
∀X, ∀f : setset, ∀p : setprop, (∀xX, p (f x))∀y{f x|xX}, p y
Proof:
Proof not loaded.
Theorem. (Repl_Empty)
∀F : setset, {F x|xEmpty} = Empty
Proof:
Proof not loaded.
Theorem. (ReplEq_ext_sub)
∀X, ∀F G : setset, (∀xX, F x = G x){F x|xX} {G x|xX}
Proof:
Proof not loaded.
Theorem. (ReplEq_ext)
∀X, ∀F G : setset, (∀xX, F x = G x){F x|xX} = {G x|xX}
Proof:
Proof not loaded.
Theorem. (Repl_inv_eq)
∀P : setprop, ∀f g : setset, (∀x, P xg (f x) = x)∀X, (∀xX, P x){g y|y{f x|xX}} = X
Proof:
Proof not loaded.
Theorem. (Repl_invol_eq)
∀P : setprop, ∀f : setset, (∀x, P xf (f x) = x)∀X, (∀xX, P x){f y|y{f x|xX}} = X
Proof:
Proof not loaded.
Definition. We define If_i to be (λp x y ⇒ Eps_i (λz : setp z = x ¬ p z = y)) of type propsetsetset.
Notation. if cond then T else E is notation corresponding to If_i type cond T E where type is the inferred type of T.
Theorem. (If_i_correct)
∀p : prop, ∀x y : set, p (if p then x else y) = x ¬ p (if p then x else y) = y
Proof:
Proof not loaded.
Theorem. (If_i_0)
∀p : prop, ∀x y : set, ¬ p(if p then x else y) = y
Proof:
Proof not loaded.
Theorem. (If_i_1)
∀p : prop, ∀x y : set, p(if p then x else y) = x
Proof:
Proof not loaded.
Theorem. (If_i_or)
∀p : prop, ∀x y : set, (if p then x else y) = x (if p then x else y) = y
Proof:
Proof not loaded.
Definition. We define UPair to be λy z ⇒ {if Empty X then y else z|X𝒫 (𝒫 Empty)} of type setsetset.
Notation. {x,y} is notation for UPair x y.
Theorem. (UPairE)
∀x y z : set, x {y,z}x = y x = z
Proof:
Proof not loaded.
Theorem. (UPairI1)
∀y z : set, y {y,z}
Proof:
Proof not loaded.
Theorem. (UPairI2)
∀y z : set, z {y,z}
Proof:
Proof not loaded.
Definition. We define Sing to be λx ⇒ {x,x} of type setset.
Notation. {x} is notation for Sing x.
Theorem. (SingI)
∀x : set, x {x}
Proof:
Proof not loaded.
Theorem. (SingE)
∀x y : set, y {x}y = x
Proof:
Proof not loaded.
Definition. We define binunion to be λX Y ⇒ {X,Y} of type setsetset.
Notation. We use as an infix operator with priority 345 and which associates to the left corresponding to applying term binunion.
Theorem. (binunionI1)
∀X Y z : set, z Xz X Y
Proof:
Proof not loaded.
Theorem. (binunionI2)
∀X Y z : set, z Yz X Y
Proof:
Proof not loaded.
Theorem. (binunionE)
∀X Y z : set, z X Yz X z Y
Proof:
Proof not loaded.
Theorem. (binunionE')
∀X Y z, ∀p : prop, (z Xp)(z Yp)(z X Yp)
Proof:
Proof not loaded.
Theorem. (binunion_asso)
∀X Y Z : set, X (Y Z) = (X Y) Z
Proof:
Proof not loaded.
Theorem. (binunion_com_Subq)
∀X Y : set, X Y Y X
Proof:
Proof not loaded.
Theorem. (binunion_com)
∀X Y : set, X Y = Y X
Proof:
Proof not loaded.
Theorem. (binunion_idl)
∀X : set, Empty X = X
Proof:
Proof not loaded.
Theorem. (binunion_idr)
∀X : set, X Empty = X
Proof:
Proof not loaded.
Theorem. (binunion_Subq_1)
∀X Y : set, X X Y
Proof:
Proof not loaded.
Theorem. (binunion_Subq_2)
∀X Y : set, Y X Y
Proof:
Proof not loaded.
Theorem. (binunion_Subq_min)
∀X Y Z : set, X ZY ZX Y Z
Proof:
Proof not loaded.
Theorem. (Subq_binunion_eq)
∀X Y, (X Y) = (X Y = Y)
Proof:
Proof not loaded.
Definition. We define SetAdjoin to be λX y ⇒ X {y} of type setsetset.
Notation. We now use the set enumeration notation {...,...,...} in general. If 0 elements are given, then Empty is used to form the corresponding term. If 1 element is given, then Sing is used to form the corresponding term. If 2 elements are given, then UPair is used to form the corresponding term. If more than elements are given, then SetAdjoin is used to reduce to the case with one fewer elements.
Definition. We define famunion to be λX F ⇒ {F x|xX} of type set(setset)set.
Notation. We use x [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using famunion.
Theorem. (famunionI)
∀X : set, ∀F : (setset), ∀x y : set, x Xy F xy xXF x
Proof:
Proof not loaded.
Theorem. (famunionE)
∀X : set, ∀F : (setset), ∀y : set, y (xXF x)∃xX, y F x
Proof:
Proof not loaded.
Theorem. (famunionE_impred)
∀X : set, ∀F : (setset), ∀y : set, y (xXF x)∀p : prop, (∀x, x Xy F xp)p
Proof:
Proof not loaded.
Theorem. (famunion_Empty)
∀F : setset, (xEmptyF x) = Empty
Proof:
Proof not loaded.
Theorem. (famunion_Subq)
∀X, ∀f g : setset, (∀xX, f x g x)famunion X f famunion X g
Proof:
Proof not loaded.
Theorem. (famunion_ext)
∀X, ∀f g : setset, (∀xX, f x = g x)famunion X f = famunion X g
Proof:
Proof not loaded.
Beginning of Section SepSec
Variable X : set
Variable P : setprop
Let z : setEps_i (λz ⇒ z X P z)
Let F : setsetλx ⇒ if P x then x else z
Definition. We define Sep to be if (∃zX, P z) then {F x|xX} else Empty of type set.
End of Section SepSec
Notation. {xA | B} is notation for Sep Ax . B).
Theorem. (SepI)
∀X : set, ∀P : (setprop), ∀x : set, x XP xx {xX|P x}
Proof:
Proof not loaded.
Theorem. (SepE)
∀X : set, ∀P : (setprop), ∀x : set, x {xX|P x}x X P x
Proof:
Proof not loaded.
Theorem. (SepE1)
∀X : set, ∀P : (setprop), ∀x : set, x {xX|P x}x X
Proof:
Proof not loaded.
Theorem. (SepE2)
∀X : set, ∀P : (setprop), ∀x : set, x {xX|P x}P x
Proof:
Proof not loaded.
Theorem. (Sep_Empty)
∀P : setprop, {xEmpty|P x} = Empty
Proof:
Proof not loaded.
Theorem. (Sep_Subq)
∀X : set, ∀P : setprop, {xX|P x} X
Proof:
Proof not loaded.
Theorem. (Sep_In_Power)
∀X : set, ∀P : setprop, {xX|P x} 𝒫 X
Proof:
Proof not loaded.
Definition. We define ReplSep to be λX P F ⇒ {F x|x{zX|P z}} of type set(setprop)(setset)set.
Notation. {B| xA, C} is notation for ReplSep Ax . C) (λ x . B).
Theorem. (ReplSepI)
∀X : set, ∀P : setprop, ∀F : setset, ∀x : set, x XP xF x {F x|xX, P x}
Proof:
Proof not loaded.
Theorem. (ReplSepE)
∀X : set, ∀P : setprop, ∀F : setset, ∀y : set, y {F x|xX, P x}∃x : set, x X P x y = F x
Proof:
Proof not loaded.
Theorem. (ReplSepE_impred)
∀X : set, ∀P : setprop, ∀F : setset, ∀y : set, y {F x|xX, P x}∀p : prop, (∀xX, P xy = F xp)p
Proof:
Proof not loaded.
Definition. We define binintersect to be λX Y ⇒ {xX|x Y} of type setsetset.
Notation. We use as an infix operator with priority 340 and which associates to the left corresponding to applying term binintersect.
Theorem. (binintersectI)
∀X Y z, z Xz Yz X Y
Proof:
Proof not loaded.
Theorem. (binintersectE)
∀X Y z, z X Yz X z Y
Proof:
Proof not loaded.
Theorem. (binintersectE1)
∀X Y z, z X Yz X
Proof:
Proof not loaded.
Theorem. (binintersectE2)
∀X Y z, z X Yz Y
Proof:
Proof not loaded.
Theorem. (binintersect_Subq_1)
∀X Y : set, X Y X
Proof:
Proof not loaded.
Theorem. (binintersect_Subq_2)
∀X Y : set, X Y Y
Proof:
Proof not loaded.
Theorem. (binintersect_Subq_eq_1)
∀X Y, X YX Y = X
Proof:
Proof not loaded.
Theorem. (binintersect_Subq_max)
∀X Y Z : set, Z XZ YZ X Y
Proof:
Proof not loaded.
Theorem. (binintersect_com_Subq)
∀X Y : set, X Y Y X
Proof:
Proof not loaded.
Theorem. (binintersect_com)
∀X Y : set, X Y = Y X
Proof:
Proof not loaded.
Definition. We define setminus to be λX Y ⇒ Sep X (λx ⇒ x Y) of type setsetset.
Notation. We use as an infix operator with priority 350 and no associativity corresponding to applying term setminus.
Theorem. (setminusI)
∀X Y z, (z X)(z Y)z X Y
Proof:
Proof not loaded.
Theorem. (setminusE)
∀X Y z, (z X Y)z X z Y
Proof:
Proof not loaded.
Theorem. (setminusE1)
∀X Y z, (z X Y)z X
Proof:
Proof not loaded.
Theorem. (setminusE2)
∀X Y z, (z X Y)z Y
Proof:
Proof not loaded.
Theorem. (setminus_Subq)
∀X Y : set, X Y X
Proof:
Proof not loaded.
Theorem. (setminus_In_Power)
∀A U, A U 𝒫 A
Proof:
Proof not loaded.
Theorem. (binunion_remove1_eq)
∀X, ∀xX, X = (X {x}) {x}
Proof:
Proof not loaded.
Theorem. (In_irref)
∀x, x x
Proof:
Proof not loaded.
Theorem. (In_no2cycle)
∀x y, x yy xFalse
Proof:
Proof not loaded.
Definition. We define ordsucc to be λx : setx {x} of type setset.
Theorem. (ordsuccI1)
∀x : set, x ordsucc x
Proof:
Proof not loaded.
Theorem. (ordsuccI2)
∀x : set, x ordsucc x
Proof:
Proof not loaded.
Theorem. (ordsuccE)
∀x y : set, y ordsucc xy x y = x
Proof:
Proof not loaded.
Notation. Natural numbers 0,1,2,... are notation for the terms formed using Empty as 0 and forming successors with ordsucc.
Theorem. (neq_0_ordsucc)
∀a : set, 0 ordsucc a
Proof:
Proof not loaded.
Theorem. (neq_ordsucc_0)
∀a : set, ordsucc a 0
Proof:
Proof not loaded.
Theorem. (ordsucc_inj)
∀a b : set, ordsucc a = ordsucc ba = b
Proof:
Proof not loaded.
Theorem. (In_0_1)
Proof:
Proof not loaded.
Theorem. (In_0_2)
Proof:
Proof not loaded.
Theorem. (In_1_2)
Proof:
Proof not loaded.
Definition. We define nat_p to be λn : set∀p : setprop, p 0(∀x : set, p xp (ordsucc x))p n of type setprop.
Theorem. (nat_0)
Proof:
Proof not loaded.
Theorem. (nat_ordsucc)
∀n : set, nat_p nnat_p (ordsucc n)
Proof:
Proof not loaded.
Theorem. (nat_1)
Proof:
Proof not loaded.
Theorem. (nat_2)
Proof:
Proof not loaded.
Theorem. (nat_0_in_ordsucc)
∀n, nat_p n0 ordsucc n
Proof:
Proof not loaded.
Theorem. (nat_ordsucc_in_ordsucc)
∀n, nat_p n∀mn, ordsucc m ordsucc n
Proof:
Proof not loaded.
Theorem. (nat_ind)
∀p : setprop, p 0(∀n, nat_p np np (ordsucc n))∀n, nat_p np n
Proof:
Proof not loaded.
Theorem. (nat_complete_ind)
∀p : setprop, (∀n, nat_p n(∀mn, p m)p n)∀n, nat_p np n
Proof:
Proof not loaded.
Theorem. (nat_inv_impred)
∀p : setprop, p 0(∀n, nat_p np (ordsucc n))∀n, nat_p np n
Proof:
Proof not loaded.
Theorem. (nat_inv)
∀n, nat_p nn = 0 ∃x, nat_p x n = ordsucc x
Proof:
Proof not loaded.
Theorem. (nat_p_trans)
∀n, nat_p n∀mn, nat_p m
Proof:
Proof not loaded.
Theorem. (nat_trans)
∀n, nat_p n∀mn, m n
Proof:
Proof not loaded.
Theorem. (nat_ordsucc_trans)
∀n, nat_p n∀mordsucc n, m n
Proof:
Proof not loaded.
Definition. We define surj to be λX Y f ⇒ (∀uX, f u Y) (∀wY, ∃uX, f u = w) of type setset(setset)prop.
Theorem. (form100_63_surjCantor)
∀A : set, ∀f : setset, ¬ surj A (𝒫 A) f
Proof:
Proof not loaded.
Definition. We define inj to be λX Y f ⇒ (∀uX, f u Y) (∀u vX, f u = f vu = v) of type setset(setset)prop.
Theorem. (form100_63_injCantor)
∀A : set, ∀f : setset, ¬ inj (𝒫 A) A f
Proof:
Proof not loaded.
Theorem. (injI)
∀X Y, ∀f : setset, (∀xX, f x Y)(∀x zX, f x = f zx = z)inj X Y f
Proof:
Proof not loaded.
Theorem. (inj_comp)
∀X Y Z : set, ∀f g : setset, inj X Y finj Y Z ginj X Z (λx ⇒ g (f x))
Proof:
Proof not loaded.
Definition. We define bij to be λX Y f ⇒ (∀uX, f u Y) (∀u vX, f u = f vu = v) (∀wY, ∃uX, f u = w) of type setset(setset)prop.
Theorem. (bijI)
∀X Y, ∀f : setset, (∀uX, f u Y)(∀u vX, f u = f vu = v)(∀wY, ∃uX, f u = w)bij X Y f
Proof:
Proof not loaded.
Theorem. (bijE)
∀X Y, ∀f : setset, bij X Y f∀p : prop, ((∀uX, f u Y)(∀u vX, f u = f vu = v)(∀wY, ∃uX, f u = w)p)p
Proof:
Proof not loaded.
Theorem. (bij_inj)
∀X Y, ∀f : setset, bij X Y finj X Y f
Proof:
Proof not loaded.
Theorem. (bij_id)
∀X, bij X X (λx ⇒ x)
Proof:
Proof not loaded.
Theorem. (bij_comp)
∀X Y Z : set, ∀f g : setset, bij X Y fbij Y Z gbij X Z (λx ⇒ g (f x))
Proof:
Proof not loaded.
Theorem. (bij_surj)
∀X Y, ∀f : setset, bij X Y fsurj X Y f
Proof:
Proof not loaded.
Definition. We define inv to be λX f ⇒ λy : setEps_i (λx ⇒ x X f x = y) of type set(setset)setset.
Theorem. (surj_rinv)
∀X Y, ∀f : setset, (∀wY, ∃uX, f u = w)∀yY, inv X f y X f (inv X f y) = y
Proof:
Proof not loaded.
Theorem. (inj_linv)
∀X, ∀f : setset, (∀u vX, f u = f vu = v)∀xX, inv X f (f x) = x
Proof:
Proof not loaded.
Theorem. (bij_inv)
∀X Y, ∀f : setset, bij X Y fbij Y X (inv X f)
Proof:
Proof not loaded.
Definition. We define atleastp to be λX Y : set∃f : setset, inj X Y f of type setsetprop.
Theorem. (atleastp_tra)
∀X Y Z, atleastp X Yatleastp Y Zatleastp X Z
Proof:
Proof not loaded.
Theorem. (Subq_atleastp)
∀X Y, X Yatleastp X Y
Proof:
Proof not loaded.
Definition. We define equip to be λX Y : set∃f : setset, bij X Y f of type setsetprop.
Theorem. (equip_atleastp)
∀X Y, equip X Yatleastp X Y
Proof:
Proof not loaded.
Theorem. (equip_ref)
∀X, equip X X
Proof:
Proof not loaded.
Theorem. (equip_sym)
∀X Y, equip X Yequip Y X
Proof:
Proof not loaded.
Theorem. (equip_tra)
∀X Y Z, equip X Yequip Y Zequip X Z
Proof:
Proof not loaded.
Theorem. (equip_0_Empty)
∀X, equip X 0X = 0
Proof:
Proof not loaded.
Theorem. (equip_adjoin_ordsucc)
∀N X y, y Xequip N Xequip (ordsucc N) (X {y})
Proof:
Proof not loaded.
Theorem. (equip_ordsucc_remove1)
∀X N, ∀xX, equip X (ordsucc N)equip (X {x}) N
Proof:
Proof not loaded.
Beginning of Section SchroederBernstein
Theorem. (KnasterTarski_set)
∀A, ∀F : setset, (∀U𝒫 A, F U 𝒫 A)(∀U V𝒫 A, U VF U F V)∃Y𝒫 A, F Y = Y
Proof:
Proof not loaded.
Theorem. (image_In_Power)
∀A B, ∀f : setset, (∀xA, f x B)∀U𝒫 A, {f x|xU} 𝒫 B
Proof:
Proof not loaded.
Theorem. (image_monotone)
∀f : setset, ∀U V, U V{f x|xU} {f x|xV}
Proof:
Proof not loaded.
Theorem. (setminus_antimonotone)
∀A U V, U VA V A U
Proof:
Proof not loaded.
Theorem. (SchroederBernstein)
∀A B, ∀f g : setset, inj A B finj B A gequip A B
Proof:
Proof not loaded.
Theorem. (atleastp_antisym_equip)
∀A B, atleastp A Batleastp B Aequip A B
Proof:
Proof not loaded.
End of Section SchroederBernstein
Beginning of Section PigeonHole
Theorem. (PigeonHole_nat)
∀n, nat_p n∀f : setset, (∀iordsucc n, f i n)¬ (∀i jordsucc n, f i = f ji = j)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section PigeonHole
Theorem. (Union_ordsucc_eq)
∀n, nat_p n (ordsucc n) = n
Proof:
Proof not loaded.
Theorem. (cases_1)
∀i1, ∀p : setprop, p 0p i
Proof:
Proof not loaded.
Theorem. (cases_2)
∀i2, ∀p : setprop, p 0p 1p i
Proof:
Proof not loaded.
Theorem. (neq_0_1)
Proof:
Proof not loaded.
Theorem. (neq_1_0)
Proof:
Proof not loaded.
Theorem. (neq_0_2)
Proof:
Proof not loaded.
Theorem. (neq_2_0)
Proof:
Proof not loaded.
Definition. We define ordinal to be λalpha : setTransSet alpha ∀betaalpha, TransSet beta of type setprop.
Theorem. (ordinal_TransSet)
∀alpha : set, ordinal alphaTransSet alpha
Proof:
Proof not loaded.
Theorem. (ordinal_Empty)
Proof:
Proof not loaded.
Theorem. (ordinal_Hered)
∀alpha : set, ordinal alpha∀betaalpha, ordinal beta
Proof:
Proof not loaded.
Theorem. (TransSet_ordsucc)
∀X : set, TransSet XTransSet (ordsucc X)
Proof:
Proof not loaded.
Theorem. (ordinal_ordsucc)
∀alpha : set, ordinal alphaordinal (ordsucc alpha)
Proof:
Proof not loaded.
Theorem. (nat_p_ordinal)
∀n : set, nat_p nordinal n
Proof:
Proof not loaded.
Theorem. (ordinal_1)
Proof:
Proof not loaded.
Theorem. (ordinal_2)
Proof:
Proof not loaded.
Theorem. (TransSet_ordsucc_In_Subq)
∀X : set, TransSet X∀xX, ordsucc x X
Proof:
Proof not loaded.
Theorem. (ordinal_ordsucc_In_Subq)
∀alpha, ordinal alpha∀betaalpha, ordsucc beta alpha
Proof:
Proof not loaded.
Theorem. (ordinal_trichotomy_or)
∀alpha beta : set, ordinal alphaordinal betaalpha beta alpha = beta beta alpha
Proof:
Proof not loaded.
Theorem. (ordinal_trichotomy_or_impred)
∀alpha beta : set, ordinal alphaordinal beta∀p : prop, (alpha betap)(alpha = betap)(beta alphap)p
Proof:
Proof not loaded.
Theorem. (ordinal_In_Or_Subq)
∀alpha beta, ordinal alphaordinal betaalpha beta beta alpha
Proof:
Proof not loaded.
Theorem. (ordinal_linear)
∀alpha beta, ordinal alphaordinal betaalpha beta beta alpha
Proof:
Proof not loaded.
Theorem. (ordinal_ordsucc_In_eq)
∀alpha beta, ordinal alphabeta alphaordsucc beta alpha alpha = ordsucc beta
Proof:
Proof not loaded.
Theorem. (ordinal_lim_or_succ)
∀alpha, ordinal alpha(∀betaalpha, ordsucc beta alpha) (∃betaalpha, alpha = ordsucc beta)
Proof:
Proof not loaded.
Theorem. (ordinal_ordsucc_In)
∀alpha, ordinal alpha∀betaalpha, ordsucc beta ordsucc alpha
Proof:
Proof not loaded.
Theorem. (ordinal_famunion)
∀X, ∀F : setset, (∀xX, ordinal (F x))ordinal (xXF x)
Proof:
Proof not loaded.
Theorem. (ordinal_binintersect)
∀alpha beta, ordinal alphaordinal betaordinal (alpha beta)
Proof:
Proof not loaded.
Theorem. (ordinal_binunion)
∀alpha beta, ordinal alphaordinal betaordinal (alpha beta)
Proof:
Proof not loaded.
Theorem. (ordinal_ind)
∀p : setprop, (∀alpha, ordinal alpha(∀betaalpha, p beta)p alpha)∀alpha, ordinal alphap alpha
Proof:
Proof not loaded.
Theorem. (least_ordinal_ex)
∀p : setprop, (∃alpha, ordinal alpha p alpha)∃alpha, ordinal alpha p alpha ∀betaalpha, ¬ p beta
Proof:
Proof not loaded.
Theorem. (equip_Sing_1)
∀x, equip {x} 1
Proof:
Proof not loaded.
Theorem. (TransSet_In_ordsucc_Subq)
∀x y, TransSet yx ordsucc yx y
Proof:
Proof not loaded.
Theorem. (exandE_i)
∀P Q : setprop, (∃x, P x Q x)∀r : prop, (∀x, P xQ xr)r
Proof:
Proof not loaded.
Theorem. (exandE_ii)
∀P Q : (setset)prop, (∃x : setset, P x Q x)∀p : prop, (∀x : setset, P xQ xp)p
Proof:
Proof not loaded.
Theorem. (exandE_iii)
∀P Q : (setsetset)prop, (∃x : setsetset, P x Q x)∀p : prop, (∀x : setsetset, P xQ xp)p
Proof:
Proof not loaded.
Theorem. (exandE_iiii)
∀P Q : (setsetsetset)prop, (∃x : setsetsetset, P x Q x)∀p : prop, (∀x : setsetsetset, P xQ xp)p
Proof:
Proof not loaded.
Beginning of Section Descr_ii
Variable P : (setset)prop
Definition. We define Descr_ii to be λx : setEps_i (λy ⇒ ∀h : setset, P hh x = y) of type setset.
Hypothesis Pex : ∃f : setset, P f
Hypothesis Puniq : ∀f g : setset, P fP gf = g
Theorem. (Descr_ii_prop)
Proof:
Proof not loaded.
End of Section Descr_ii
Beginning of Section Descr_iii
Variable P : (setsetset)prop
Definition. We define Descr_iii to be λx y : setEps_i (λz ⇒ ∀h : setsetset, P hh x y = z) of type setsetset.
Hypothesis Pex : ∃f : setsetset, P f
Hypothesis Puniq : ∀f g : setsetset, P fP gf = g
Proof:
Proof not loaded.
End of Section Descr_iii
Beginning of Section Descr_Vo1
Variable P : Vo 1prop
Definition. We define Descr_Vo1 to be λx : set∀h : setprop, P hh x of type Vo 1.
Hypothesis Pex : ∃f : Vo 1, P f
Hypothesis Puniq : ∀f g : Vo 1, P fP gf = g
Proof:
Proof not loaded.
End of Section Descr_Vo1
Beginning of Section If_ii
Variable p : prop
Variable f g : setset
Definition. We define If_ii to be λx ⇒ if p then f x else g x of type setset.
Theorem. (If_ii_1)
pIf_ii = f
Proof:
Proof not loaded.
Theorem. (If_ii_0)
¬ pIf_ii = g
Proof:
Proof not loaded.
End of Section If_ii
Beginning of Section If_iii
Variable p : prop
Variable f g : setsetset
Definition. We define If_iii to be λx y ⇒ if p then f x y else g x y of type setsetset.
Theorem. (If_iii_1)
pIf_iii = f
Proof:
Proof not loaded.
Theorem. (If_iii_0)
¬ pIf_iii = g
Proof:
Proof not loaded.
End of Section If_iii
Beginning of Section EpsilonRec_i
Variable F : set(setset)set
Definition. We define In_rec_i_G to be λX Y ⇒ ∀R : setsetprop, (∀X : set, ∀f : setset, (∀xX, R x (f x))R X (F X f))R X Y of type setsetprop.
Definition. We define In_rec_i to be λX ⇒ Eps_i (In_rec_i_G X) of type setset.
Theorem. (In_rec_i_G_c)
∀X : set, ∀f : setset, (∀xX, In_rec_i_G x (f x))In_rec_i_G X (F X f)
Proof:
Proof not loaded.
Theorem. (In_rec_i_G_inv)
∀X : set, ∀Y : set, In_rec_i_G X Y∃f : setset, (∀xX, In_rec_i_G x (f x)) Y = F X f
Proof:
Proof not loaded.
Hypothesis Fr : ∀X : set, ∀g h : setset, (∀xX, g x = h x)F X g = F X h
Theorem. (In_rec_i_G_f)
∀X : set, ∀Y Z : set, In_rec_i_G X YIn_rec_i_G X ZY = Z
Proof:
Proof not loaded.
Theorem. (In_rec_i_G_In_rec_i)
∀X : set, In_rec_i_G X (In_rec_i X)
Proof:
Proof not loaded.
Theorem. (In_rec_i_G_In_rec_i_d)
∀X : set, In_rec_i_G X (F X In_rec_i)
Proof:
Proof not loaded.
Theorem. (In_rec_i_eq)
∀X : set, In_rec_i X = F X In_rec_i
Proof:
Proof not loaded.
End of Section EpsilonRec_i
Beginning of Section EpsilonRec_ii
Variable F : set(set(setset))(setset)
Definition. We define In_rec_G_ii to be λX Y ⇒ ∀R : set(setset)prop, (∀X : set, ∀f : set(setset), (∀xX, R x (f x))R X (F X f))R X Y of type set(setset)prop.
Definition. We define In_rec_ii to be λX ⇒ Descr_ii (In_rec_G_ii X) of type set(setset).
Theorem. (In_rec_G_ii_c)
∀X : set, ∀f : set(setset), (∀xX, In_rec_G_ii x (f x))In_rec_G_ii X (F X f)
Proof:
Proof not loaded.
Theorem. (In_rec_G_ii_inv)
∀X : set, ∀Y : (setset), In_rec_G_ii X Y∃f : set(setset), (∀xX, In_rec_G_ii x (f x)) Y = F X f
Proof:
Proof not loaded.
Hypothesis Fr : ∀X : set, ∀g h : set(setset), (∀xX, g x = h x)F X g = F X h
Theorem. (In_rec_G_ii_f)
∀X : set, ∀Y Z : (setset), In_rec_G_ii X YIn_rec_G_ii X ZY = Z
Proof:
Proof not loaded.
Theorem. (In_rec_G_ii_In_rec_ii)
∀X : set, In_rec_G_ii X (In_rec_ii X)
Proof:
Proof not loaded.
Theorem. (In_rec_G_ii_In_rec_ii_d)
∀X : set, In_rec_G_ii X (F X In_rec_ii)
Proof:
Proof not loaded.
Theorem. (In_rec_ii_eq)
∀X : set, In_rec_ii X = F X In_rec_ii
Proof:
Proof not loaded.
End of Section EpsilonRec_ii
Beginning of Section EpsilonRec_iii
Variable F : set(set(setsetset))(setsetset)
Definition. We define In_rec_G_iii to be λX Y ⇒ ∀R : set(setsetset)prop, (∀X : set, ∀f : set(setsetset), (∀xX, R x (f x))R X (F X f))R X Y of type set(setsetset)prop.
Definition. We define In_rec_iii to be λX ⇒ Descr_iii (In_rec_G_iii X) of type set(setsetset).
Theorem. (In_rec_G_iii_c)
∀X : set, ∀f : set(setsetset), (∀xX, In_rec_G_iii x (f x))In_rec_G_iii X (F X f)
Proof:
Proof not loaded.
Theorem. (In_rec_G_iii_inv)
∀X : set, ∀Y : (setsetset), In_rec_G_iii X Y∃f : set(setsetset), (∀xX, In_rec_G_iii x (f x)) Y = F X f
Proof:
Proof not loaded.
Hypothesis Fr : ∀X : set, ∀g h : set(setsetset), (∀xX, g x = h x)F X g = F X h
Theorem. (In_rec_G_iii_f)
∀X : set, ∀Y Z : (setsetset), In_rec_G_iii X YIn_rec_G_iii X ZY = Z
Proof:
Proof not loaded.
Theorem. (In_rec_G_iii_In_rec_iii)
∀X : set, In_rec_G_iii X (In_rec_iii X)
Proof:
Proof not loaded.
Theorem. (In_rec_G_iii_In_rec_iii_d)
∀X : set, In_rec_G_iii X (F X In_rec_iii)
Proof:
Proof not loaded.
Theorem. (In_rec_iii_eq)
∀X : set, In_rec_iii X = F X In_rec_iii
Proof:
Proof not loaded.
End of Section EpsilonRec_iii
Beginning of Section NatRec
Variable z : set
Variable f : setsetset
Let F : set(setset)setλn g ⇒ if n n then f ( n) (g ( n)) else z
Definition. We define nat_primrec to be In_rec_i F of type setset.
Theorem. (nat_primrec_r)
∀X : set, ∀g h : setset, (∀xX, g x = h x)F X g = F X h
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (nat_primrec_S)
∀n : set, nat_p nnat_primrec (ordsucc n) = f n (nat_primrec n)
Proof:
Proof not loaded.
End of Section NatRec
Beginning of Section NatAdd
Definition. We define add_nat to be λn m : setnat_primrec n (λ_ r ⇒ ordsucc r) m of type setsetset.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
Theorem. (add_nat_0R)
∀n : set, n + 0 = n
Proof:
Proof not loaded.
Theorem. (add_nat_SR)
∀n m : set, nat_p mn + ordsucc m = ordsucc (n + m)
Proof:
Proof not loaded.
Theorem. (add_nat_p)
∀n : set, nat_p n∀m : set, nat_p mnat_p (n + m)
Proof:
Proof not loaded.
Theorem. (add_nat_1_1_2)
1 + 1 = 2
Proof:
Proof not loaded.
Theorem. (add_nat_asso)
∀n : set, nat_p n∀m : set, nat_p m∀k : set, nat_p k(n + m) + k = n + (m + k)
Proof:
Proof not loaded.
Theorem. (add_nat_0L)
∀m : set, nat_p m0 + m = m
Proof:
Proof not loaded.
Theorem. (add_nat_SL)
∀n : set, nat_p n∀m : set, nat_p mordsucc n + m = ordsucc (n + m)
Proof:
Proof not loaded.
Theorem. (add_nat_com)
∀n : set, nat_p n∀m : set, nat_p mn + m = m + n
Proof:
Proof not loaded.
Theorem. (add_nat_In_R)
∀m, nat_p m∀km, ∀n, nat_p nk + n m + n
Proof:
Proof not loaded.
Theorem. (add_nat_In_L)
∀n, nat_p n∀m, nat_p m∀km, n + k n + m
Proof:
Proof not loaded.
Theorem. (add_nat_Subq_R)
∀k, nat_p k∀m, nat_p mk m∀n, nat_p nk + n m + n
Proof:
Proof not loaded.
Theorem. (add_nat_Subq_L)
∀n, nat_p n∀k, nat_p k∀m, nat_p mk mn + k n + m
Proof:
Proof not loaded.
Theorem. (add_nat_Subq_R')
∀m, nat_p m∀n, nat_p nm m + n
Proof:
Proof not loaded.
Theorem. (nat_Subq_add_ex)
∀n, nat_p n∀m, nat_p mn m∃k, nat_p k m = k + n
Proof:
Proof not loaded.
Theorem. (add_nat_cancel_R)
∀k, nat_p k∀m, nat_p m∀n, nat_p nk + n = m + nk = m
Proof:
Proof not loaded.
End of Section NatAdd
Beginning of Section NatMul
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
Definition. We define mul_nat to be λn m : setnat_primrec 0 (λ_ r ⇒ n + r) m of type setsetset.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_nat.
Theorem. (mul_nat_0R)
∀n : set, n * 0 = 0
Proof:
Proof not loaded.
Theorem. (mul_nat_SR)
∀n m, nat_p mn * ordsucc m = n + n * m
Proof:
Proof not loaded.
Theorem. (mul_nat_1R)
∀n, n * 1 = n
Proof:
Proof not loaded.
Theorem. (mul_nat_p)
∀n : set, nat_p n∀m : set, nat_p mnat_p (n * m)
Proof:
Proof not loaded.
Theorem. (mul_nat_0L)
∀m : set, nat_p m0 * m = 0
Proof:
Proof not loaded.
Theorem. (mul_nat_SL)
∀n : set, nat_p n∀m : set, nat_p mordsucc n * m = n * m + m
Proof:
Proof not loaded.
Theorem. (mul_nat_com)
∀n : set, nat_p n∀m : set, nat_p mn * m = m * n
Proof:
Proof not loaded.
Theorem. (mul_add_nat_distrL)
∀n : set, nat_p n∀m : set, nat_p m∀k : set, nat_p kn * (m + k) = n * m + n * k
Proof:
Proof not loaded.
Theorem. (mul_nat_asso)
∀n : set, nat_p n∀m : set, nat_p m∀k : set, nat_p k(n * m) * k = n * (m * k)
Proof:
Proof not loaded.
Theorem. (mul_nat_Subq_R)
∀m n, nat_p mnat_p nm n∀k, nat_p km * k n * k
Proof:
Proof not loaded.
Theorem. (mul_nat_Subq_L)
∀m n, nat_p mnat_p nm n∀k, nat_p kk * m k * n
Proof:
Proof not loaded.
Theorem. (mul_nat_0_or_Subq)
∀m, nat_p m∀n, nat_p nn = 0 m m * n
Proof:
Proof not loaded.
Theorem. (mul_nat_0_inv)
∀m, nat_p m∀n, nat_p nm * n = 0m = 0 n = 0
Proof:
Proof not loaded.
Theorem. (mul_nat_0m_1n_In)
∀m, nat_p m∀n, nat_p n0 m1 nm m * n
Proof:
Proof not loaded.
Theorem. (nat_le1_cases)
∀m, nat_p mm 1m = 0 m = 1
Proof:
Proof not loaded.
Definition. We define Pi_nat to be λf n ⇒ nat_primrec 1 (λi r ⇒ r * f i) n of type (setset)setset.
Theorem. (Pi_nat_0)
∀f : setset, Pi_nat f 0 = 1
Proof:
Proof not loaded.
Theorem. (Pi_nat_S)
∀f : setset, ∀n, nat_p nPi_nat f (ordsucc n) = Pi_nat f n * f n
Proof:
Proof not loaded.
Theorem. (Pi_nat_p)
∀f : setset, ∀n, nat_p n(∀in, nat_p (f i))nat_p (Pi_nat f n)
Proof:
Proof not loaded.
Theorem. (Pi_nat_0_inv)
∀f : setset, ∀n, nat_p n(∀in, nat_p (f i))Pi_nat f n = 0(∃in, f i = 0)
Proof:
Proof not loaded.
Definition. We define exp_nat to be λn m : setnat_primrec 1 (λ_ r ⇒ n * r) m of type setsetset.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_nat.
Theorem. (exp_nat_0)
∀n, n ^ 0 = 1
Proof:
Proof not loaded.
Theorem. (exp_nat_S)
∀n m, nat_p mn ^ (ordsucc m) = n * n ^ m
Proof:
Proof not loaded.
Theorem. (exp_nat_p)
∀n, nat_p n∀m, nat_p mnat_p (n ^ m)
Proof:
Proof not loaded.
Theorem. (exp_nat_1)
∀n, n ^ 1 = n
Proof:
Proof not loaded.
End of Section NatMul
Beginning of Section form100_52
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_nat.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_nat.
Theorem. (Subq_Sing0_1)
Proof:
Proof not loaded.
Theorem. (Subq_1_Sing0)
Proof:
Proof not loaded.
Theorem. (eq_1_Sing0)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (equip_finite_Power)
∀n, nat_p n∀X, equip X nequip (𝒫 X) (2 ^ n)
Proof:
Proof not loaded.
End of Section form100_52
Theorem. (ZF_closed_E)
∀U, ZF_closed U∀p : prop, (Union_closed UPower_closed URepl_closed Up)p
Proof:
Proof not loaded.
Theorem. (ZF_Union_closed)
∀U, ZF_closed U∀XU, X U
Proof:
Proof not loaded.
Theorem. (ZF_Power_closed)
∀U, ZF_closed U∀XU, 𝒫 X U
Proof:
Proof not loaded.
Theorem. (ZF_Repl_closed)
∀U, ZF_closed U∀XU, ∀F : setset, (∀xX, F x U){F x|xX} U
Proof:
Proof not loaded.
Theorem. (ZF_UPair_closed)
∀U, ZF_closed U∀x yU, {x,y} U
Proof:
Proof not loaded.
Theorem. (ZF_Sing_closed)
∀U, ZF_closed U∀xU, {x} U
Proof:
Proof not loaded.
Theorem. (ZF_binunion_closed)
∀U, ZF_closed U∀X YU, (X Y) U
Proof:
Proof not loaded.
Theorem. (ZF_ordsucc_closed)
∀U, ZF_closed U∀xU, ordsucc x U
Proof:
Proof not loaded.
Theorem. (nat_p_UnivOf_Empty)
∀n : set, nat_p nn UnivOf Empty
Proof:
Proof not loaded.
Definition. We define ω to be {nUnivOf Empty|nat_p n} of type set.
Theorem. (omega_nat_p)
∀nω, nat_p n
Proof:
Proof not loaded.
Theorem. (nat_p_omega)
∀n : set, nat_p nn ω
Proof:
Proof not loaded.
Theorem. (omega_ordsucc)
Proof:
Proof not loaded.
Theorem. (form100_22_v2)
∀f : setset, ¬ inj (𝒫 ω) ω f
Proof:
Proof not loaded.
Theorem. (form100_22_v3)
∀g : setset, ¬ surj ω (𝒫 ω) g
Proof:
Proof not loaded.
Theorem. (form100_22_v1)
Proof:
Proof not loaded.
Theorem. (omega_TransSet)
Proof:
Proof not loaded.
Theorem. (omega_ordinal)
Proof:
Proof not loaded.
Theorem. (ordsucc_omega_ordinal)
Proof:
Proof not loaded.
Definition. We define finite to be λX ⇒ ∃nω, equip X n of type setprop.
Theorem. (nat_finite)
∀n, nat_p nfinite n
Proof:
Proof not loaded.
Theorem. (finite_ind)
∀p : setprop, p Empty(∀X y, finite Xy Xp Xp (X {y}))∀X, finite Xp X
Proof:
Proof not loaded.
Theorem. (finite_Empty)
Proof:
Proof not loaded.
Theorem. (Sing_finite)
∀x, finite {x}
Proof:
Proof not loaded.
Theorem. (adjoin_finite)
∀X y, finite Xfinite (X {y})
Proof:
Proof not loaded.
Theorem. (binunion_finite)
∀X, finite X∀Y, finite Yfinite (X Y)
Proof:
Proof not loaded.
Theorem. (famunion_nat_finite)
∀X : setset, ∀n, nat_p n(∀in, finite (X i))finite (inX i)
Proof:
Proof not loaded.
Theorem. (Subq_finite)
∀X, finite X∀Y, Y Xfinite Y
Proof:
Proof not loaded.
Definition. We define infinite to be λA ⇒ ¬ finite A of type setprop.
Beginning of Section InfinitePrimes
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_nat.
Definition. We define divides_nat to be λm n ⇒ m ω n ω ∃kω, m * k = n of type setsetprop.
Theorem. (divides_nat_ref)
∀n, nat_p ndivides_nat n n
Proof:
Proof not loaded.
Theorem. (divides_nat_tra)
∀k m n, divides_nat k mdivides_nat m ndivides_nat k n
Proof:
Proof not loaded.
Definition. We define prime_nat to be λn ⇒ n ω 1 n ∀kω, divides_nat k nk = 1 k = n of type setprop.
Theorem. (divides_nat_mulR)
∀m nω, divides_nat m (m * n)
Proof:
Proof not loaded.
Theorem. (divides_nat_mulL)
∀m nω, divides_nat n (m * n)
Proof:
Proof not loaded.
Theorem. (Pi_nat_divides)
∀f : setset, ∀n, nat_p n(∀in, nat_p (f i))(∀in, divides_nat (f i) (Pi_nat f n))
Proof:
Proof not loaded.
Definition. We define composite_nat to be λn ⇒ n ω ∃k mω, 1 k 1 m k * m = n of type setprop.
Proof:
Proof not loaded.
Theorem. (prime_nat_divisor_ex)
∀n, nat_p n1 n∃p, prime_nat p divides_nat p n
Proof:
Proof not loaded.
Theorem. (nat_1In_not_divides_ordsucc)
∀m n, 1 mdivides_nat m n¬ divides_nat m (ordsucc n)
Proof:
Proof not loaded.
Definition. We define primes to be {nω|prime_nat n} of type set.
Proof:
Proof not loaded.
End of Section InfinitePrimes
Beginning of Section InfiniteRamsey
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
Theorem. (atleastp_omega_infinite)
∀X, atleastp ω Xinfinite X
Proof:
Proof not loaded.
Theorem. (infinite_remove1)
∀X, infinite X∀y, infinite (X {y})
Proof:
Proof not loaded.
Theorem. (infinite_Finite_Subq_ex)
∀X, infinite X∀n, nat_p n∃YX, equip Y n
Proof:
Proof not loaded.
Theorem. (infiniteRamsey_lem)
∀X, ∀f g f' : setset, infinite X(∀ZX, infinite Zf Z Z infinite (f Z))(∀ZX, infinite Zg Z Z g Z f Z)f' 0 = f X(∀m, nat_p mf' (ordsucc m) = f (f' m))(∀m, nat_p mf' m X infinite (f' m)) (∀m m'ω, m m'f' m' f' m) (∀m m'ω, g (f' m) = g (f' m')m = m')
Proof:
Proof not loaded.
Theorem. (infiniteRamsey)
∀c, nat_p c∀n, nat_p n∀X, infinite X∀C : setset, (∀YX, equip Y nC Y c)∃HX, ∃ic, infinite H ∀YH, equip Y nC Y = i
Proof:
Proof not loaded.
End of Section InfiniteRamsey
Definition. We define Inj1 to be In_rec_i (λX f ⇒ {0} {f x|xX}) of type setset.
Theorem. (Inj1_eq)
∀X : set, Inj1 X = {0} {Inj1 x|xX}
Proof:
Proof not loaded.
Theorem. (Inj1I1)
∀X : set, 0 Inj1 X
Proof:
Proof not loaded.
Theorem. (Inj1I2)
∀X x : set, x XInj1 x Inj1 X
Proof:
Proof not loaded.
Theorem. (Inj1E)
∀X y : set, y Inj1 Xy = 0 ∃xX, y = Inj1 x
Proof:
Proof not loaded.
Theorem. (Inj1NE1)
∀x : set, Inj1 x 0
Proof:
Proof not loaded.
Theorem. (Inj1NE2)
∀x : set, Inj1 x {0}
Proof:
Proof not loaded.
Definition. We define Inj0 to be λX ⇒ {Inj1 x|xX} of type setset.
Theorem. (Inj0I)
∀X x : set, x XInj1 x Inj0 X
Proof:
Proof not loaded.
Theorem. (Inj0E)
∀X y : set, y Inj0 X∃x : set, x X y = Inj1 x
Proof:
Proof not loaded.
Definition. We define Unj to be In_rec_i (λX f ⇒ {f x|xX {0}}) of type setset.
Theorem. (Unj_eq)
∀X : set, Unj X = {Unj x|xX {0}}
Proof:
Proof not loaded.
Theorem. (Unj_Inj1_eq)
∀X : set, Unj (Inj1 X) = X
Proof:
Proof not loaded.
Theorem. (Inj1_inj)
∀X Y : set, Inj1 X = Inj1 YX = Y
Proof:
Proof not loaded.
Theorem. (Unj_Inj0_eq)
∀X : set, Unj (Inj0 X) = X
Proof:
Proof not loaded.
Theorem. (Inj0_inj)
∀X Y : set, Inj0 X = Inj0 YX = Y
Proof:
Proof not loaded.
Theorem. (Inj0_0)
Proof:
Proof not loaded.
Theorem. (Inj0_Inj1_neq)
∀X Y : set, Inj0 X Inj1 Y
Proof:
Proof not loaded.
Definition. We define setsum to be λX Y ⇒ {Inj0 x|xX} {Inj1 y|yY} of type setsetset.
Notation. We use + as an infix operator with priority 450 and which associates to the left corresponding to applying term setsum.
Theorem. (Inj0_setsum)
∀X Y x : set, x XInj0 x X + Y
Proof:
Proof not loaded.
Theorem. (Inj1_setsum)
∀X Y y : set, y YInj1 y X + Y
Proof:
Proof not loaded.
Theorem. (setsum_Inj_inv)
∀X Y z : set, z X + Y(∃xX, z = Inj0 x) (∃yY, z = Inj1 y)
Proof:
Proof not loaded.
Theorem. (Inj0_setsum_0L)
∀X : set, 0 + X = Inj0 X
Proof:
Proof not loaded.
Theorem. (Inj1_setsum_1L)
∀X : set, 1 + X = Inj1 X
Proof:
Proof not loaded.
Beginning of Section pair_setsum
Let pair ≝ setsum
Definition. We define proj0 to be λZ ⇒ {Unj z|zZ, ∃x : set, Inj0 x = z} of type setset.
Definition. We define proj1 to be λZ ⇒ {Unj z|zZ, ∃y : set, Inj1 y = z} of type setset.
Theorem. (Inj0_pair_0_eq)
Inj0 = pair 0
Proof:
Proof not loaded.
Theorem. (Inj1_pair_1_eq)
Inj1 = pair 1
Proof:
Proof not loaded.
Theorem. (pairI0)
∀X Y x, x Xpair 0 x pair X Y
Proof:
Proof not loaded.
Theorem. (pairI1)
∀X Y y, y Ypair 1 y pair X Y
Proof:
Proof not loaded.
Theorem. (pairE)
∀X Y z, z pair X Y(∃xX, z = pair 0 x) (∃yY, z = pair 1 y)
Proof:
Proof not loaded.
Theorem. (pairE0)
∀X Y x, pair 0 x pair X Yx X
Proof:
Proof not loaded.
Theorem. (pairE1)
∀X Y y, pair 1 y pair X Yy Y
Proof:
Proof not loaded.
Theorem. (proj0I)
∀w u : set, pair 0 u wu proj0 w
Proof:
Proof not loaded.
Theorem. (proj0E)
∀w u : set, u proj0 wpair 0 u w
Proof:
Proof not loaded.
Theorem. (proj1I)
∀w u : set, pair 1 u wu proj1 w
Proof:
Proof not loaded.
Theorem. (proj1E)
∀w u : set, u proj1 wpair 1 u w
Proof:
Proof not loaded.
Theorem. (proj0_pair_eq)
∀X Y : set, proj0 (pair X Y) = X
Proof:
Proof not loaded.
Theorem. (proj1_pair_eq)
∀X Y : set, proj1 (pair X Y) = Y
Proof:
Proof not loaded.
Definition. We define Sigma to be λX Y ⇒ xX{pair x y|yY x} of type set(setset)set.
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Sigma.
Theorem. (Sigma_eta_proj0_proj1)
∀X : set, ∀Y : setset, ∀z(xX, Y x), pair (proj0 z) (proj1 z) = z proj0 z X proj1 z Y (proj0 z)
Proof:
Proof not loaded.
Theorem. (proj0_Sigma)
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)proj0 z X
Proof:
Proof not loaded.
Theorem. (proj1_Sigma)
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)proj1 z Y (proj0 z)
Proof:
Proof not loaded.
Theorem. (pair_Sigma)
∀X : set, ∀Y : setset, ∀xX, ∀yY x, pair x y xX, Y x
Proof:
Proof not loaded.
Theorem. (pair_Sigma_E1)
∀X : set, ∀Y : setset, ∀x y : set, pair x y (xX, Y x)y Y x
Proof:
Proof not loaded.
Theorem. (Sigma_E)
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)∃xX, ∃yY x, z = pair x y
Proof:
Proof not loaded.
Definition. We define setprod to be λX Y : setxX, Y of type setsetset.
Notation. We use as an infix operator with priority 440 and which associates to the left corresponding to applying term setprod.
Let lam : set(setset)setSigma
Definition. We define ap to be λf x ⇒ {proj1 z|zf, ∃y : set, z = pair x y} of type setsetset.
Notation. When x is a set, a term x y is notation for ap x y.
Notation. λ xAB is notation for the set Sigma Ax : set ⇒ B).
Notation. We now use n-tuple notation (a0,...,an-1) for n ≥ 2 for λ i ∈ n . if i = 0 then a0 else ... if i = n-2 then an-2 else an-1.
Theorem. (lamI)
∀X : set, ∀F : setset, ∀xX, ∀yF x, pair x y λxXF x
Proof:
Proof not loaded.
Theorem. (lamE)
∀X : set, ∀F : setset, ∀z : set, z (λxXF x)∃xX, ∃yF x, z = pair x y
Proof:
Proof not loaded.
Theorem. (apI)
∀f x y, pair x y fy f x
Proof:
Proof not loaded.
Theorem. (apE)
∀f x y, y f xpair x y f
Proof:
Proof not loaded.
Theorem. (beta)
∀X : set, ∀F : setset, ∀x : set, x X(λxXF x) x = F x
Proof:
Proof not loaded.
Theorem. (proj0_ap_0)
∀u, proj0 u = u 0
Proof:
Proof not loaded.
Theorem. (proj1_ap_1)
∀u, proj1 u = u 1
Proof:
Proof not loaded.
Theorem. (pair_ap_0)
∀x y : set, (pair x y) 0 = x
Proof:
Proof not loaded.
Theorem. (pair_ap_1)
∀x y : set, (pair x y) 1 = y
Proof:
Proof not loaded.
Theorem. (ap0_Sigma)
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)(z 0) X
Proof:
Proof not loaded.
Theorem. (ap1_Sigma)
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)(z 1) (Y (z 0))
Proof:
Proof not loaded.
Definition. We define pair_p to be λu : setpair (u 0) (u 1) = u of type setprop.
Theorem. (pair_p_I)
∀x y, pair_p (pair x y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (tuple_pair)
∀x y : set, pair x y = (x,y)
Proof:
Proof not loaded.
Definition. We define Pi to be λX Y ⇒ {f𝒫 (xX, (Y x))|∀xX, f x Y x} of type set(setset)set.
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Pi.
Theorem. (PiI)
∀X : set, ∀Y : setset, ∀f : set, (∀uf, pair_p u u 0 X)(∀xX, f x Y x)f xX, Y x
Proof:
Proof not loaded.
Theorem. (lam_Pi)
∀X : set, ∀Y : setset, ∀F : setset, (∀xX, F x Y x)(λxXF x) (xX, Y x)
Proof:
Proof not loaded.
Theorem. (ap_Pi)
∀X : set, ∀Y : setset, ∀f : set, ∀x : set, f (xX, Y x)x Xf x Y x
Proof:
Proof not loaded.
Definition. We define setexp to be λX Y : setyY, X of type setsetset.
Notation. We use :^: as an infix operator with priority 430 and which associates to the left corresponding to applying term setexp.
Theorem. (pair_tuple_fun)
pair = (λx y ⇒ (x,y))
Proof:
Proof not loaded.
Beginning of Section Tuples
Variable x0 x1 : set
Theorem. (tuple_2_0_eq)
(x0,x1) 0 = x0
Proof:
Proof not loaded.
Theorem. (tuple_2_1_eq)
(x0,x1) 1 = x1
Proof:
Proof not loaded.
End of Section Tuples
Theorem. (ReplEq_setprod_ext)
∀X Y, ∀F G : setsetset, (∀xX, ∀yY, F x y = G x y){F (w 0) (w 1)|wX Y} = {G (w 0) (w 1)|wX Y}
Proof:
Proof not loaded.
Theorem. (lamI2)
∀X, ∀F : setset, ∀xX, ∀yF x, (x,y) λxXF x
Proof:
Proof not loaded.
Theorem. (tuple_2_Sigma)
∀X : set, ∀Y : setset, ∀xX, ∀yY x, (x,y) xX, Y x
Proof:
Proof not loaded.
Theorem. (tuple_2_setprod)
∀X : set, ∀Y : set, ∀xX, ∀yY, (x,y) X Y
Proof:
Proof not loaded.
End of Section pair_setsum
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Sigma.
Notation. We use as an infix operator with priority 440 and which associates to the left corresponding to applying term setprod.
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Pi.
Notation. We use :^: as an infix operator with priority 430 and which associates to the left corresponding to applying term setexp.
Definition. We define DescrR_i_io_1 to be λR ⇒ Eps_i (λx ⇒ (∃y : setprop, R x y) (∀y z : setprop, R x yR x zy = z)) of type (set(setprop)prop)set.
Definition. We define DescrR_i_io_2 to be λR ⇒ Descr_Vo1 (λy ⇒ R (DescrR_i_io_1 R) y) of type (set(setprop)prop)setprop.
Theorem. (DescrR_i_io_12)
∀R : set(setprop)prop, (∃x, (∃y : setprop, R x y) (∀y z : setprop, R x yR x zy = z))R (DescrR_i_io_1 R) (DescrR_i_io_2 R)
Proof:
Proof not loaded.
Definition. We define PNoEq_ to be λalpha p q ⇒ ∀betaalpha, p beta q beta of type set(setprop)(setprop)prop.
Theorem. (PNoEq_ref_)
∀alpha, ∀p : setprop, PNoEq_ alpha p p
Proof:
Proof not loaded.
Theorem. (PNoEq_sym_)
∀alpha, ∀p q : setprop, PNoEq_ alpha p qPNoEq_ alpha q p
Proof:
Proof not loaded.
Theorem. (PNoEq_tra_)
∀alpha, ∀p q r : setprop, PNoEq_ alpha p qPNoEq_ alpha q rPNoEq_ alpha p r
Proof:
Proof not loaded.
Theorem. (PNoEq_antimon_)
∀p q : setprop, ∀alpha, ordinal alpha∀betaalpha, PNoEq_ alpha p qPNoEq_ beta p q
Proof:
Proof not loaded.
Definition. We define PNoLt_ to be λalpha p q ⇒ ∃betaalpha, PNoEq_ beta p q ¬ p beta q beta of type set(setprop)(setprop)prop.
Theorem. (PNoLt_E_)
∀alpha, ∀p q : setprop, PNoLt_ alpha p q∀R : prop, (∀beta, beta alphaPNoEq_ beta p q¬ p betaq betaR)R
Proof:
Proof not loaded.
Theorem. (PNoLt_irref_)
∀alpha, ∀p : setprop, ¬ PNoLt_ alpha p p
Proof:
Proof not loaded.
Theorem. (PNoLt_mon_)
∀p q : setprop, ∀alpha, ordinal alpha∀betaalpha, PNoLt_ beta p qPNoLt_ alpha p q
Proof:
Proof not loaded.
Theorem. (PNoLt_trichotomy_or_)
∀p q : setprop, ∀alpha, ordinal alphaPNoLt_ alpha p q PNoEq_ alpha p q PNoLt_ alpha q p
Proof:
Proof not loaded.
Definition. We define PNoLt to be λalpha p beta q ⇒ PNoLt_ (alpha beta) p q alpha beta PNoEq_ alpha p q q alpha beta alpha PNoEq_ beta p q ¬ p beta of type set(setprop)set(setprop)prop.
Theorem. (PNoLtI1)
∀alpha beta, ∀p q : setprop, PNoLt_ (alpha beta) p qPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLtI2)
∀alpha beta, ∀p q : setprop, alpha betaPNoEq_ alpha p qq alphaPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLtI3)
∀alpha beta, ∀p q : setprop, beta alphaPNoEq_ beta p q¬ p betaPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLtE)
∀alpha beta, ∀p q : setprop, PNoLt alpha p beta q∀R : prop, (PNoLt_ (alpha beta) p qR)(alpha betaPNoEq_ alpha p qq alphaR)(beta alphaPNoEq_ beta p q¬ p betaR)R
Proof:
Proof not loaded.
Theorem. (PNoLt_irref)
∀alpha, ∀p : setprop, ¬ PNoLt alpha p alpha p
Proof:
Proof not loaded.
Theorem. (PNoLt_trichotomy_or)
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNoLt alpha p beta q alpha = beta PNoEq_ alpha p q PNoLt beta q alpha p
Proof:
Proof not loaded.
Theorem. (PNoLtEq_tra)
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoLt alpha p beta qPNoEq_ beta q rPNoLt alpha p beta r
Proof:
Proof not loaded.
Theorem. (PNoEqLt_tra)
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoEq_ alpha p qPNoLt alpha q beta rPNoLt alpha p beta r
Proof:
Proof not loaded.
Theorem. (PNoLt_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLt alpha p beta qPNoLt beta q gamma rPNoLt alpha p gamma r
Proof:
Proof not loaded.
Definition. We define PNoLe to be λalpha p beta q ⇒ PNoLt alpha p beta q alpha = beta PNoEq_ alpha p q of type set(setprop)set(setprop)prop.
Theorem. (PNoLeI1)
∀alpha beta, ∀p q : setprop, PNoLt alpha p beta qPNoLe alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLeI2)
∀alpha, ∀p q : setprop, PNoEq_ alpha p qPNoLe alpha p alpha q
Proof:
Proof not loaded.
Theorem. (PNoLe_ref)
∀alpha, ∀p : setprop, PNoLe alpha p alpha p
Proof:
Proof not loaded.
Theorem. (PNoLe_antisym)
∀alpha beta, ordinal alphaordinal beta∀p q : setprop, PNoLe alpha p beta qPNoLe beta q alpha palpha = beta PNoEq_ alpha p q
Proof:
Proof not loaded.
Theorem. (PNoLtLe_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLt alpha p beta qPNoLe beta q gamma rPNoLt alpha p gamma r
Proof:
Proof not loaded.
Theorem. (PNoLeLt_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLe alpha p beta qPNoLt beta q gamma rPNoLt alpha p gamma r
Proof:
Proof not loaded.
Theorem. (PNoEqLe_tra)
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoEq_ alpha p qPNoLe alpha q beta rPNoLe alpha p beta r
Proof:
Proof not loaded.
Theorem. (PNoLe_tra)
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLe alpha p beta qPNoLe beta q gamma rPNoLe alpha p gamma r
Proof:
Proof not loaded.
Definition. We define PNo_downc to be λL alpha p ⇒ ∃beta, ordinal beta ∃q : setprop, L beta q PNoLe alpha p beta q of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_upc to be λR alpha p ⇒ ∃beta, ordinal beta ∃q : setprop, R beta q PNoLe beta q alpha p of type (set(setprop)prop)set(setprop)prop.
Theorem. (PNoLe_downc)
∀L : set(setprop)prop, ∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNo_downc L alpha pPNoLe beta q alpha pPNo_downc L beta q
Proof:
Proof not loaded.
Theorem. (PNo_downc_ref)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, L alpha pPNo_downc L alpha p
Proof:
Proof not loaded.
Theorem. (PNo_upc_ref)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, R alpha pPNo_upc R alpha p
Proof:
Proof not loaded.
Theorem. (PNoLe_upc)
∀R : set(setprop)prop, ∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNo_upc R alpha pPNoLe alpha p beta qPNo_upc R beta q
Proof:
Proof not loaded.
Definition. We define PNoLt_pwise to be λL R ⇒ ∀gamma, ordinal gamma∀p : setprop, L gamma p∀delta, ordinal delta∀q : setprop, R delta qPNoLt gamma p delta q of type (set(setprop)prop)(set(setprop)prop)prop.
Theorem. (PNoLt_pwise_downc_upc)
∀L R : set(setprop)prop, PNoLt_pwise L RPNoLt_pwise (PNo_downc L) (PNo_upc R)
Proof:
Proof not loaded.
Definition. We define PNo_rel_strict_upperbd to be λL alpha p ⇒ ∀betaalpha, ∀q : setprop, PNo_downc L beta qPNoLt beta q alpha p of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_rel_strict_lowerbd to be λR alpha p ⇒ ∀betaalpha, ∀q : setprop, PNo_upc R beta qPNoLt alpha p beta q of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_rel_strict_imv to be λL R alpha p ⇒ PNo_rel_strict_upperbd L alpha p PNo_rel_strict_lowerbd R alpha p of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNoEq_rel_strict_upperbd)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_rel_strict_upperbd L alpha pPNo_rel_strict_upperbd L alpha q
Proof:
Proof not loaded.
Theorem. (PNo_rel_strict_upperbd_antimon)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, ∀betaalpha, PNo_rel_strict_upperbd L alpha pPNo_rel_strict_upperbd L beta p
Proof:
Proof not loaded.
Theorem. (PNoEq_rel_strict_lowerbd)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_rel_strict_lowerbd R alpha pPNo_rel_strict_lowerbd R alpha q
Proof:
Proof not loaded.
Theorem. (PNo_rel_strict_lowerbd_antimon)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, ∀betaalpha, PNo_rel_strict_lowerbd R alpha pPNo_rel_strict_lowerbd R beta p
Proof:
Proof not loaded.
Theorem. (PNoEq_rel_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R alpha q
Proof:
Proof not loaded.
Theorem. (PNo_rel_strict_imv_antimon)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, ∀betaalpha, PNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R beta p
Proof:
Proof not loaded.
Definition. We define PNo_rel_strict_uniq_imv to be λL R alpha p ⇒ PNo_rel_strict_imv L R alpha p ∀q : setprop, PNo_rel_strict_imv L R alpha qPNoEq_ alpha p q of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Definition. We define PNo_rel_strict_split_imv to be λL R alpha p ⇒ PNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p delta delta alpha) PNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p delta delta = alpha) of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNo_extend0_eq)
∀alpha, ∀p : setprop, PNoEq_ alpha p (λdelta ⇒ p delta delta alpha)
Proof:
Proof not loaded.
Theorem. (PNo_extend1_eq)
∀alpha, ∀p : setprop, PNoEq_ alpha p (λdelta ⇒ p delta delta = alpha)
Proof:
Proof not loaded.
Theorem. (PNo_rel_imv_ex)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alpha(∃p : setprop, PNo_rel_strict_uniq_imv L R alpha p) (∃taualpha, ∃p : setprop, PNo_rel_strict_split_imv L R tau p)
Proof:
Proof not loaded.
Definition. We define PNo_lenbdd to be λalpha L ⇒ ∀beta, ∀p : setprop, L beta pbeta alpha of type set(set(setprop)prop)prop.
Theorem. (PNo_lenbdd_strict_imv_extend0)
∀L R : set(setprop)prop, ∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∀p : setprop, PNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p delta delta alpha)
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_strict_imv_extend1)
∀L R : set(setprop)prop, ∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∀p : setprop, PNo_rel_strict_imv L R alpha pPNo_rel_strict_imv L R (ordsucc alpha) (λdelta ⇒ p delta delta = alpha)
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_strict_imv_split)
∀L R : set(setprop)prop, ∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∀p : setprop, PNo_rel_strict_imv L R alpha pPNo_rel_strict_split_imv L R alpha p
Proof:
Proof not loaded.
Theorem. (PNo_rel_imv_bdd_ex)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∃betaordsucc alpha, ∃p : setprop, PNo_rel_strict_split_imv L R beta p
Proof:
Proof not loaded.
Definition. We define PNo_strict_upperbd to be λL alpha p ⇒ ∀beta, ordinal beta∀q : setprop, L beta qPNoLt beta q alpha p of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_strict_lowerbd to be λR alpha p ⇒ ∀beta, ordinal beta∀q : setprop, R beta qPNoLt alpha p beta q of type (set(setprop)prop)set(setprop)prop.
Definition. We define PNo_strict_imv to be λL R alpha p ⇒ PNo_strict_upperbd L alpha p PNo_strict_lowerbd R alpha p of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNoEq_strict_upperbd)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_strict_upperbd L alpha pPNo_strict_upperbd L alpha q
Proof:
Proof not loaded.
Theorem. (PNoEq_strict_lowerbd)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_strict_lowerbd R alpha pPNo_strict_lowerbd R alpha q
Proof:
Proof not loaded.
Theorem. (PNoEq_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p q : setprop, PNoEq_ alpha p qPNo_strict_imv L R alpha pPNo_strict_imv L R alpha q
Proof:
Proof not loaded.
Theorem. (PNo_strict_upperbd_imp_rel_strict_upperbd)
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀betaordsucc alpha, ∀p : setprop, PNo_strict_upperbd L alpha pPNo_rel_strict_upperbd L beta p
Proof:
Proof not loaded.
Theorem. (PNo_strict_lowerbd_imp_rel_strict_lowerbd)
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀betaordsucc alpha, ∀p : setprop, PNo_strict_lowerbd R alpha pPNo_rel_strict_lowerbd R beta p
Proof:
Proof not loaded.
Theorem. (PNo_strict_imv_imp_rel_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀betaordsucc alpha, ∀p : setprop, PNo_strict_imv L R alpha pPNo_rel_strict_imv L R beta p
Proof:
Proof not loaded.
Theorem. (PNo_rel_split_imv_imp_strict_imv)
∀L R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, PNo_rel_strict_split_imv L R alpha pPNo_strict_imv L R alpha p
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_strict_imv_ex)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∃betaordsucc alpha, ∃p : setprop, PNo_strict_imv L R beta p
Proof:
Proof not loaded.
Definition. We define PNo_least_rep to be λL R beta p ⇒ ordinal beta PNo_strict_imv L R beta p ∀gammabeta, ∀q : setprop, ¬ PNo_strict_imv L R gamma q of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Definition. We define PNo_least_rep2 to be λL R beta p ⇒ PNo_least_rep L R beta p ∀x, x beta¬ p x of type (set(setprop)prop)(set(setprop)prop)set(setprop)prop.
Theorem. (PNo_strict_imv_pred_eq)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alpha∀p q : setprop, PNo_least_rep L R alpha pPNo_strict_imv L R alpha q∀betaalpha, p beta q beta
Proof:
Proof not loaded.
Theorem. (PNo_lenbdd_least_rep2_exuniq2)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha R∃beta, (∃p : setprop, PNo_least_rep2 L R beta p) (∀p q : setprop, PNo_least_rep2 L R beta pPNo_least_rep2 L R beta qp = q)
Proof:
Proof not loaded.
Definition. We define PNo_bd to be λL R ⇒ DescrR_i_io_1 (PNo_least_rep2 L R) of type (set(setprop)prop)(set(setprop)prop)set.
Definition. We define PNo_pred to be λL R ⇒ DescrR_i_io_2 (PNo_least_rep2 L R) of type (set(setprop)prop)(set(setprop)prop)setprop.
Theorem. (PNo_bd_pred_lem)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha RPNo_least_rep2 L R (PNo_bd L R) (PNo_pred L R)
Proof:
Proof not loaded.
Theorem. (PNo_bd_pred)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha RPNo_least_rep L R (PNo_bd L R) (PNo_pred L R)
Proof:
Proof not loaded.
Theorem. (PNo_bd_In)
∀L R : set(setprop)prop, PNoLt_pwise L R∀alpha, ordinal alphaPNo_lenbdd alpha LPNo_lenbdd alpha RPNo_bd L R ordsucc alpha
Proof:
Proof not loaded.
Beginning of Section TaggedSets
Let tag : setsetλalpha ⇒ SetAdjoin alpha {1}
Notation. We use ' as a postfix operator with priority 100 corresponding to applying term tag.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (tagged_not_ordinal)
∀y, ¬ ordinal (y ')
Proof:
Proof not loaded.
Theorem. (tagged_notin_ordinal)
∀alpha y, ordinal alpha(y ') alpha
Proof:
Proof not loaded.
Theorem. (tagged_eqE_Subq)
∀alpha beta, ordinal alphaalpha ' = beta 'alpha beta
Proof:
Proof not loaded.
Theorem. (tagged_eqE_eq)
∀alpha beta, ordinal alphaordinal betaalpha ' = beta 'alpha = beta
Proof:
Proof not loaded.
Theorem. (tagged_ReplE)
∀alpha beta, ordinal alphaordinal betabeta ' {gamma '|gammaalpha}beta alpha
Proof:
Proof not loaded.
Theorem. (ordinal_notin_tagged_Repl)
∀alpha Y, ordinal alphaalpha {y '|yY}
Proof:
Proof not loaded.
Definition. We define SNoElts_ to be λalpha ⇒ alpha {beta '|betaalpha} of type setset.
Theorem. (SNoElts_mon)
∀alpha beta, alpha betaSNoElts_ alpha SNoElts_ beta
Proof:
Proof not loaded.
Definition. We define SNo_ to be λalpha x ⇒ x SNoElts_ alpha ∀betaalpha, exactly1of2 (beta ' x) (beta x) of type setsetprop.
Definition. We define PSNo to be λalpha p ⇒ {betaalpha|p beta} {beta '|betaalpha, ¬ p beta} of type set(setprop)set.
Theorem. (PNoEq_PSNo)
∀alpha, ordinal alpha∀p : setprop, PNoEq_ alpha (λbeta ⇒ beta PSNo alpha p) p
Proof:
Proof not loaded.
Theorem. (SNo_PSNo)
∀alpha, ordinal alpha∀p : setprop, SNo_ alpha (PSNo alpha p)
Proof:
Proof not loaded.
Theorem. (SNo_PSNo_eta_)
∀alpha x, ordinal alphaSNo_ alpha xx = PSNo alpha (λbeta ⇒ beta x)
Proof:
Proof not loaded.
Definition. We define SNo to be λx ⇒ ∃alpha, ordinal alpha SNo_ alpha x of type setprop.
Theorem. (SNo_SNo)
∀alpha, ordinal alpha∀z, SNo_ alpha zSNo z
Proof:
Proof not loaded.
Definition. We define SNoLev to be λx ⇒ Eps_i (λalpha ⇒ ordinal alpha SNo_ alpha x) of type setset.
Theorem. (SNoLev_uniq_Subq)
∀x alpha beta, ordinal alphaordinal betaSNo_ alpha xSNo_ beta xalpha beta
Proof:
Proof not loaded.
Theorem. (SNoLev_uniq)
∀x alpha beta, ordinal alphaordinal betaSNo_ alpha xSNo_ beta xalpha = beta
Proof:
Proof not loaded.
Theorem. (SNoLev_prop)
∀x, SNo xordinal (SNoLev x) SNo_ (SNoLev x) x
Proof:
Proof not loaded.
Theorem. (SNoLev_ordinal)
∀x, SNo xordinal (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNoLev_)
∀x, SNo xSNo_ (SNoLev x) x
Proof:
Proof not loaded.
Theorem. (SNo_PSNo_eta)
∀x, SNo xx = PSNo (SNoLev x) (λbeta ⇒ beta x)
Proof:
Proof not loaded.
Theorem. (SNoLev_PSNo)
∀alpha, ordinal alpha∀p : setprop, SNoLev (PSNo alpha p) = alpha
Proof:
Proof not loaded.
Theorem. (SNo_Subq)
∀x y, SNo xSNo ySNoLev x SNoLev y(∀alphaSNoLev x, alpha x alpha y)x y
Proof:
Proof not loaded.
Definition. We define SNoEq_ to be λalpha x y ⇒ PNoEq_ alpha (λbeta ⇒ beta x) (λbeta ⇒ beta y) of type setsetsetprop.
Theorem. (SNoEq_I)
∀alpha x y, (∀betaalpha, beta x beta y)SNoEq_ alpha x y
Proof:
Proof not loaded.
Theorem. (SNo_eq)
∀x y, SNo xSNo ySNoLev x = SNoLev ySNoEq_ (SNoLev x) x yx = y
Proof:
Proof not loaded.
End of Section TaggedSets
Definition. We define SNoLt to be λx y ⇒ PNoLt (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y) of type setsetprop.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Definition. We define SNoLe to be λx y ⇒ PNoLe (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y) of type setsetprop.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Theorem. (SNoLtLe)
∀x y, x < yx y
Proof:
Proof not loaded.
Theorem. (SNoLeE)
∀x y, SNo xSNo yx yx < y x = y
Proof:
Proof not loaded.
Theorem. (SNoEq_sym_)
∀alpha x y, SNoEq_ alpha x ySNoEq_ alpha y x
Proof:
Proof not loaded.
Theorem. (SNoEq_tra_)
∀alpha x y z, SNoEq_ alpha x ySNoEq_ alpha y zSNoEq_ alpha x z
Proof:
Proof not loaded.
Theorem. (SNoLtE)
∀x y, SNo xSNo yx < y∀p : prop, (∀z, SNo zSNoLev z SNoLev x SNoLev ySNoEq_ (SNoLev z) z xSNoEq_ (SNoLev z) z yx < zz < ySNoLev z xSNoLev z yp)(SNoLev x SNoLev ySNoEq_ (SNoLev x) x ySNoLev x yp)(SNoLev y SNoLev xSNoEq_ (SNoLev y) x ySNoLev y xp)p
Proof:
Proof not loaded.
Theorem. (SNoLtI2)
∀x y, SNoLev x SNoLev ySNoEq_ (SNoLev x) x ySNoLev x yx < y
Proof:
Proof not loaded.
Theorem. (SNoLtI3)
∀x y, SNoLev y SNoLev xSNoEq_ (SNoLev y) x ySNoLev y xx < y
Proof:
Proof not loaded.
Theorem. (SNoLt_irref)
∀x, ¬ SNoLt x x
Proof:
Proof not loaded.
Theorem. (SNoLt_trichotomy_or)
∀x y, SNo xSNo yx < y x = y y < x
Proof:
Proof not loaded.
Theorem. (SNoLt_trichotomy_or_impred)
∀x y, SNo xSNo y∀p : prop, (x < yp)(x = yp)(y < xp)p
Proof:
Proof not loaded.
Theorem. (SNoLt_tra)
∀x y z, SNo xSNo ySNo zx < yy < zx < z
Proof:
Proof not loaded.
Theorem. (SNoLe_ref)
∀x, SNoLe x x
Proof:
Proof not loaded.
Theorem. (SNoLe_antisym)
∀x y, SNo xSNo yx yy xx = y
Proof:
Proof not loaded.
Theorem. (SNoLtLe_tra)
∀x y z, SNo xSNo ySNo zx < yy zx < z
Proof:
Proof not loaded.
Theorem. (SNoLeLt_tra)
∀x y z, SNo xSNo ySNo zx yy < zx < z
Proof:
Proof not loaded.
Theorem. (SNoLe_tra)
∀x y z, SNo xSNo ySNo zx yy zx z
Proof:
Proof not loaded.
Theorem. (SNoLtLe_or)
∀x y, SNo xSNo yx < y y x
Proof:
Proof not loaded.
Theorem. (SNoLt_PSNo_PNoLt)
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPSNo alpha p < PSNo beta qPNoLt alpha p beta q
Proof:
Proof not loaded.
Theorem. (PNoLt_SNoLt_PSNo)
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNoLt alpha p beta qPSNo alpha p < PSNo beta q
Proof:
Proof not loaded.
Definition. We define SNoCut to be λL R ⇒ PSNo (PNo_bd (λalpha p ⇒ ordinal alpha PSNo alpha p L) (λalpha p ⇒ ordinal alpha PSNo alpha p R)) (PNo_pred (λalpha p ⇒ ordinal alpha PSNo alpha p L) (λalpha p ⇒ ordinal alpha PSNo alpha p R)) of type setsetset.
Definition. We define SNoCutP to be λL R ⇒ (∀xL, SNo x) (∀yR, SNo y) (∀xL, ∀yR, x < y) of type setsetprop.
Theorem. (SNoCutP_SNoCut)
∀L R, SNoCutP L RSNo (SNoCut L R) SNoLev (SNoCut L R) ordsucc ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y))) (∀xL, x < SNoCut L R) (∀yR, SNoCut L R < y) (∀z, SNo z(∀xL, x < z)(∀yR, z < y)SNoLev (SNoCut L R) SNoLev z SNoEq_ (SNoLev (SNoCut L R)) (SNoCut L R) z)
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_impred)
∀L R, SNoCutP L R∀p : prop, (SNo (SNoCut L R)SNoLev (SNoCut L R) ordsucc ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y)))(∀xL, x < SNoCut L R)(∀yR, SNoCut L R < y)(∀z, SNo z(∀xL, x < z)(∀yR, z < y)SNoLev (SNoCut L R) SNoLev z SNoEq_ (SNoLev (SNoCut L R)) (SNoCut L R) z)p)p
Proof:
Proof not loaded.
Theorem. (SNoCutP_L_0)
∀L, (∀xL, SNo x)SNoCutP L 0
Proof:
Proof not loaded.
Theorem. (SNoCutP_0_0)
Proof:
Proof not loaded.
Definition. We define SNoS_ to be λalpha ⇒ {x𝒫 (SNoElts_ alpha)|∃betaalpha, SNo_ beta x} of type setset.
Theorem. (SNoS_E)
∀alpha, ordinal alpha∀xSNoS_ alpha, ∃betaalpha, SNo_ beta x
Proof:
Proof not loaded.
Beginning of Section TaggedSets2
Let tag : setsetλalpha ⇒ SetAdjoin alpha {1}
Notation. We use ' as a postfix operator with priority 100 corresponding to applying term tag.
Theorem. (SNoS_I)
∀alpha, ordinal alpha∀x, ∀betaalpha, SNo_ beta xx SNoS_ alpha
Proof:
Proof not loaded.
Theorem. (SNoS_I2)
∀x y, SNo xSNo ySNoLev x SNoLev yx SNoS_ (SNoLev y)
Proof:
Proof not loaded.
Theorem. (SNoS_Subq)
∀alpha beta, ordinal alphaordinal betaalpha betaSNoS_ alpha SNoS_ beta
Proof:
Proof not loaded.
Theorem. (SNoLev_uniq2)
∀alpha, ordinal alpha∀x, SNo_ alpha xSNoLev x = alpha
Proof:
Proof not loaded.
Theorem. (SNoS_E2)
∀alpha, ordinal alpha∀xSNoS_ alpha, ∀p : prop, (SNoLev x alphaordinal (SNoLev x)SNo xSNo_ (SNoLev x) xp)p
Proof:
Proof not loaded.
Theorem. (SNoS_In_neq)
∀w, SNo w∀xSNoS_ (SNoLev w), x w
Proof:
Proof not loaded.
Theorem. (SNoS_SNoLev)
∀z, SNo zz SNoS_ (ordsucc (SNoLev z))
Proof:
Proof not loaded.
Definition. We define SNoL to be λz ⇒ {xSNoS_ (SNoLev z)|x < z} of type setset.
Definition. We define SNoR to be λz ⇒ {ySNoS_ (SNoLev z)|z < y} of type setset.
Theorem. (SNoCutP_SNoL_SNoR)
∀z, SNo zSNoCutP (SNoL z) (SNoR z)
Proof:
Proof not loaded.
Theorem. (SNoL_E)
∀x, SNo x∀wSNoL x, ∀p : prop, (SNo wSNoLev w SNoLev xw < xp)p
Proof:
Proof not loaded.
Theorem. (SNoR_E)
∀x, SNo x∀zSNoR x, ∀p : prop, (SNo zSNoLev z SNoLev xx < zp)p
Proof:
Proof not loaded.
Theorem. (SNoL_SNoS_)
∀z, SNoL z SNoS_ (SNoLev z)
Proof:
Proof not loaded.
Theorem. (SNoR_SNoS_)
∀z, SNoR z SNoS_ (SNoLev z)
Proof:
Proof not loaded.
Theorem. (SNoL_SNoS)
∀x, SNo x∀wSNoL x, w SNoS_ (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNoR_SNoS)
∀x, SNo x∀zSNoR x, z SNoS_ (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNoL_I)
∀z, SNo z∀x, SNo xSNoLev x SNoLev zx < zx SNoL z
Proof:
Proof not loaded.
Theorem. (SNoR_I)
∀z, SNo z∀y, SNo ySNoLev y SNoLev zz < yy SNoR z
Proof:
Proof not loaded.
Theorem. (SNo_eta)
∀z, SNo zz = SNoCut (SNoL z) (SNoR z)
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNo_SNoCut)
∀L R, SNoCutP L RSNo (SNoCut L R)
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_L)
∀L R, SNoCutP L R∀xL, x < SNoCut L R
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_R)
∀L R, SNoCutP L R∀yR, SNoCut L R < y
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_fst)
∀L R, SNoCutP L R∀z, SNo z(∀xL, x < z)(∀yR, z < y)SNoLev (SNoCut L R) SNoLev z SNoEq_ (SNoLev (SNoCut L R)) (SNoCut L R) z
Proof:
Proof not loaded.
Theorem. (SNoCut_Le)
∀L1 R1 L2 R2, SNoCutP L1 R1SNoCutP L2 R2(∀wL1, w < SNoCut L2 R2)(∀zR2, SNoCut L1 R1 < z)SNoCut L1 R1 SNoCut L2 R2
Proof:
Proof not loaded.
Theorem. (SNoCut_ext)
∀L1 R1 L2 R2, SNoCutP L1 R1SNoCutP L2 R2(∀wL1, w < SNoCut L2 R2)(∀zR1, SNoCut L2 R2 < z)(∀wL2, w < SNoCut L1 R1)(∀zR2, SNoCut L1 R1 < z)SNoCut L1 R1 = SNoCut L2 R2
Proof:
Proof not loaded.
Theorem. (SNoLt_SNoL_or_SNoR_impred)
∀x y, SNo xSNo yx < y∀p : prop, (∀zSNoL y, z SNoR xp)(x SNoL yp)(y SNoR xp)p
Proof:
Proof not loaded.
Theorem. (SNoL_or_SNoR_impred)
∀x y, SNo xSNo y∀p : prop, (x = yp)(∀zSNoL y, z SNoR xp)(x SNoL yp)(y SNoR xp)(∀zSNoR y, z SNoL xp)(x SNoR yp)(y SNoL xp)p
Proof:
Proof not loaded.
Theorem. (SNoL_SNoCutP_ex)
∀L R, SNoCutP L R∀wSNoL (SNoCut L R), ∃w'L, w w'
Proof:
Proof not loaded.
Theorem. (SNoR_SNoCutP_ex)
∀L R, SNoCutP L R∀zSNoR (SNoCut L R), ∃z'R, z' z
Proof:
Proof not loaded.
Theorem. (ordinal_SNo_)
∀alpha, ordinal alphaSNo_ alpha alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNo)
∀alpha, ordinal alphaSNo alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLev)
∀alpha, ordinal alphaSNoLev alpha = alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLev_max)
∀alpha, ordinal alpha∀z, SNo zSNoLev z alphaz < alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoL)
∀alpha, ordinal alphaSNoL alpha = SNoS_ alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoR)
∀alpha, ordinal alphaSNoR alpha = Empty
Proof:
Proof not loaded.
Theorem. (nat_p_SNo)
∀n, nat_p nSNo n
Proof:
Proof not loaded.
Theorem. (omega_SNo)
∀nω, SNo n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ordinal_In_SNoLt)
∀alpha, ordinal alpha∀betaalpha, beta < alpha
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLev_max_2)
∀alpha, ordinal alpha∀z, SNo zSNoLev z ordsucc alphaz alpha
Proof:
Proof not loaded.
Theorem. (ordinal_Subq_SNoLe)
∀alpha beta, ordinal alphaordinal betaalpha betaalpha beta
Proof:
Proof not loaded.
Theorem. (ordinal_SNoLt_In)
∀alpha beta, ordinal alphaordinal betaalpha < betaalpha beta
Proof:
Proof not loaded.
Theorem. (omega_nonneg)
∀mω, 0 m
Proof:
Proof not loaded.
Theorem. (SNo_0)
Proof:
Proof not loaded.
Theorem. (SNo_1)
Proof:
Proof not loaded.
Theorem. (SNo_2)
Proof:
Proof not loaded.
Theorem. (SNoLev_0)
Proof:
Proof not loaded.
Theorem. (SNoCut_0_0)
Proof:
Proof not loaded.
Theorem. (SNoL_0)
Proof:
Proof not loaded.
Theorem. (SNoR_0)
Proof:
Proof not loaded.
Theorem. (SNoL_1)
Proof:
Proof not loaded.
Theorem. (SNoR_1)
Proof:
Proof not loaded.
Theorem. (SNo_max_SNoLev)
∀x, SNo x(∀ySNoS_ (SNoLev x), y < x)SNoLev x = x
Proof:
Proof not loaded.
Theorem. (SNo_max_ordinal)
∀x, SNo x(∀ySNoS_ (SNoLev x), y < x)ordinal x
Proof:
Proof not loaded.
Theorem. (pos_low_eq_one)
∀x, SNo x0 < xSNoLev x 1x = 1
Proof:
Proof not loaded.
Definition. We define SNo_extend0 to be λx ⇒ PSNo (ordsucc (SNoLev x)) (λdelta ⇒ delta x delta SNoLev x) of type setset.
Definition. We define SNo_extend1 to be λx ⇒ PSNo (ordsucc (SNoLev x)) (λdelta ⇒ delta x delta = SNoLev x) of type setset.
Theorem. (SNo_extend0_SNo_)
∀x, SNo xSNo_ (ordsucc (SNoLev x)) (SNo_extend0 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNo_)
∀x, SNo xSNo_ (ordsucc (SNoLev x)) (SNo_extend1 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend0_SNo)
∀x, SNo xSNo (SNo_extend0 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNo)
∀x, SNo xSNo (SNo_extend1 x)
Proof:
Proof not loaded.
Theorem. (SNo_extend0_SNoLev)
∀x, SNo xSNoLev (SNo_extend0 x) = ordsucc (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNoLev)
∀x, SNo xSNoLev (SNo_extend1 x) = ordsucc (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNo_extend0_nIn)
∀x, SNo xSNoLev x SNo_extend0 x
Proof:
Proof not loaded.
Theorem. (SNo_extend1_In)
∀x, SNo xSNoLev x SNo_extend1 x
Proof:
Proof not loaded.
Theorem. (SNo_extend0_SNoEq)
∀x, SNo xSNoEq_ (SNoLev x) (SNo_extend0 x) x
Proof:
Proof not loaded.
Theorem. (SNo_extend1_SNoEq)
∀x, SNo xSNoEq_ (SNoLev x) (SNo_extend1 x) x
Proof:
Proof not loaded.
Theorem. (SNoLev_0_eq_0)
∀x, SNo xSNoLev x = 0x = 0
Proof:
Proof not loaded.
Definition. We define eps_ to be λn ⇒ {0} {(ordsucc m) '|mn} of type setset.
Theorem. (eps_ordinal_In_eq_0)
∀n alpha, ordinal alphaalpha eps_ nalpha = 0
Proof:
Proof not loaded.
Theorem. (eps_0_1)
Proof:
Proof not loaded.
Theorem. (SNo__eps_)
∀nω, SNo_ (ordsucc n) (eps_ n)
Proof:
Proof not loaded.
Theorem. (SNo_eps_)
∀nω, SNo (eps_ n)
Proof:
Proof not loaded.
Theorem. (SNo_eps_1)
Proof:
Proof not loaded.
Theorem. (SNoLev_eps_)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (SNo_eps_decr)
∀nω, ∀mn, eps_ n < eps_ m
Proof:
Proof not loaded.
Theorem. (SNo_eps_pos)
∀nω, 0 < eps_ n
Proof:
Proof not loaded.
Theorem. (SNo_pos_eps_Lt)
∀n, nat_p n∀xSNoS_ (ordsucc n), 0 < xeps_ n < x
Proof:
Proof not loaded.
Theorem. (SNo_pos_eps_Le)
∀n, nat_p n∀xSNoS_ (ordsucc (ordsucc n)), 0 < xeps_ n x
Proof:
Proof not loaded.
Theorem. (eps_SNo_eq)
∀n, nat_p n∀xSNoS_ (ordsucc n), 0 < xSNoEq_ (SNoLev x) (eps_ n) x∃mn, x = eps_ m
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section TaggedSets2
Theorem. (SNo_etaE)
∀z, SNo z∀p : prop, (∀L R, SNoCutP L R(∀xL, SNoLev x SNoLev z)(∀yR, SNoLev y SNoLev z)z = SNoCut L Rp)p
Proof:
Proof not loaded.
Theorem. (SNo_ind)
∀P : setprop, (∀L R, SNoCutP L R(∀xL, P x)(∀yR, P y)P (SNoCut L R))∀z, SNo zP z
Proof:
Proof not loaded.
Beginning of Section SurrealRecI
Variable F : set(setset)set
Let default : setEps_i (λ_ ⇒ True)
Let G : set(setsetset)setsetλalpha g ⇒ If_ii (ordinal alpha) (λz : setif z SNoS_ (ordsucc alpha) then F z (λw ⇒ g (SNoLev w) w) else default) (λz : setdefault)
Definition. We define SNo_rec_i to be λz ⇒ In_rec_ii G (SNoLev z) z of type setset.
Hypothesis Fr : ∀z, SNo z∀g h : setset, (∀wSNoS_ (SNoLev z), g w = h w)F z g = F z h
Theorem. (SNo_rec_i_eq)
∀z, SNo zSNo_rec_i z = F z SNo_rec_i
Proof:
Proof not loaded.
End of Section SurrealRecI
Beginning of Section SurrealRecII
Variable F : set(set(setset))(setset)
Let default : (setset)Descr_ii (λ_ ⇒ True)
Let G : set(setset(setset))set(setset)λalpha g ⇒ If_iii (ordinal alpha) (λz : setIf_ii (z SNoS_ (ordsucc alpha)) (F z (λw ⇒ g (SNoLev w) w)) default) (λz : setdefault)
Definition. We define SNo_rec_ii to be λz ⇒ In_rec_iii G (SNoLev z) z of type set(setset).
Hypothesis Fr : ∀z, SNo z∀g h : set(setset), (∀wSNoS_ (SNoLev z), g w = h w)F z g = F z h
Theorem. (SNo_rec_ii_eq)
∀z, SNo zSNo_rec_ii z = F z SNo_rec_ii
Proof:
Proof not loaded.
End of Section SurrealRecII
Beginning of Section SurrealRec2
Variable F : setset(setsetset)set
Let G : set(setsetset)set(setset)setλw f z g ⇒ F w z (λx y ⇒ if x = w then g y else f x y)
Let H : set(setsetset)setsetλw f z ⇒ if SNo z then SNo_rec_i (G w f) z else Empty
Definition. We define SNo_rec2 to be SNo_rec_ii H of type setsetset.
Hypothesis Fr : ∀w, SNo w∀z, SNo z∀g h : setsetset, (∀xSNoS_ (SNoLev w), ∀y, SNo yg x y = h x y)(∀ySNoS_ (SNoLev z), g w y = h w y)F w z g = F w z h
Theorem. (SNo_rec2_G_prop)
∀w, SNo w∀f k : setsetset, (∀xSNoS_ (SNoLev w), f x = k x)∀z, SNo z∀g h : setset, (∀uSNoS_ (SNoLev z), g u = h u)G w f z g = G w k z h
Proof:
Proof not loaded.
Theorem. (SNo_rec2_eq_1)
∀w, SNo w∀f : setsetset, ∀z, SNo zSNo_rec_i (G w f) z = G w f z (SNo_rec_i (G w f))
Proof:
Proof not loaded.
Theorem. (SNo_rec2_eq)
∀w, SNo w∀z, SNo zSNo_rec2 w z = F w z SNo_rec2
Proof:
Proof not loaded.
End of Section SurrealRec2
Theorem. (SNo_ordinal_ind)
∀P : setprop, (∀alpha, ordinal alpha∀xSNoS_ alpha, P x)(∀x, SNo xP x)
Proof:
Proof not loaded.
Theorem. (SNo_ordinal_ind2)
∀P : setsetprop, (∀alpha, ordinal alpha∀beta, ordinal beta∀xSNoS_ alpha, ∀ySNoS_ beta, P x y)(∀x y, SNo xSNo yP x y)
Proof:
Proof not loaded.
Theorem. (SNo_ordinal_ind3)
∀P : setsetsetprop, (∀alpha, ordinal alpha∀beta, ordinal beta∀gamma, ordinal gamma∀xSNoS_ alpha, ∀ySNoS_ beta, ∀zSNoS_ gamma, P x y z)(∀x y z, SNo xSNo ySNo zP x y z)
Proof:
Proof not loaded.
Theorem. (SNoLev_ind)
∀P : setprop, (∀x, SNo x(∀wSNoS_ (SNoLev x), P w)P x)(∀x, SNo xP x)
Proof:
Proof not loaded.
Theorem. (SNoLev_ind2)
∀P : setsetprop, (∀x y, SNo xSNo y(∀wSNoS_ (SNoLev x), P w y)(∀zSNoS_ (SNoLev y), P x z)(∀wSNoS_ (SNoLev x), ∀zSNoS_ (SNoLev y), P w z)P x y)∀x y, SNo xSNo yP x y
Proof:
Proof not loaded.
Theorem. (SNoLev_ind3)
∀P : setsetsetprop, (∀x y z, SNo xSNo ySNo z(∀uSNoS_ (SNoLev x), P u y z)(∀vSNoS_ (SNoLev y), P x v z)(∀wSNoS_ (SNoLev z), P x y w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), P u v z)(∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), P u y w)(∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P x v w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P u v w)P x y z)∀x y z, SNo xSNo ySNo zP x y z
Proof:
Proof not loaded.
Theorem. (SNo_omega)
Proof:
Proof not loaded.
Theorem. (SNoLt_0_1)
0 < 1
Proof:
Proof not loaded.
Theorem. (SNoLt_0_2)
0 < 2
Proof:
Proof not loaded.
Theorem. (SNoLt_1_2)
1 < 2
Proof:
Proof not loaded.
Theorem. (restr_SNo_)
∀x, SNo x∀alphaSNoLev x, SNo_ alpha (x SNoElts_ alpha)
Proof:
Proof not loaded.
Theorem. (restr_SNo)
∀x, SNo x∀alphaSNoLev x, SNo (x SNoElts_ alpha)
Proof:
Proof not loaded.
Theorem. (restr_SNoLev)
∀x, SNo x∀alphaSNoLev x, SNoLev (x SNoElts_ alpha) = alpha
Proof:
Proof not loaded.
Theorem. (restr_SNoEq)
∀x, SNo x∀alphaSNoLev x, SNoEq_ alpha (x SNoElts_ alpha) x
Proof:
Proof not loaded.
Theorem. (SNo_extend0_restr_eq)
∀x, SNo xx = SNo_extend0 x SNoElts_ (SNoLev x)
Proof:
Proof not loaded.
Theorem. (SNo_extend1_restr_eq)
∀x, SNo xx = SNo_extend1 x SNoElts_ (SNoLev x)
Proof:
Proof not loaded.
Beginning of Section SurrealMinus
Definition. We define minus_SNo to be SNo_rec_i (λx m ⇒ SNoCut {m z|zSNoR x} {m w|wSNoL x}) of type setset.
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Theorem. (minus_SNo_eq)
∀x, SNo x- x = SNoCut {- z|zSNoR x} {- w|wSNoL x}
Proof:
Proof not loaded.
Theorem. (minus_SNo_prop1)
∀x, SNo xSNo (- x) (∀uSNoL x, - x < - u) (∀uSNoR x, - u < - x) SNoCutP {- z|zSNoR x} {- w|wSNoL x}
Proof:
Proof not loaded.
Theorem. (SNo_minus_SNo)
∀x, SNo xSNo (- x)
Proof:
Proof not loaded.
Theorem. (minus_SNo_Lt_contra)
∀x y, SNo xSNo yx < y- y < - x
Proof:
Proof not loaded.
Theorem. (minus_SNo_Le_contra)
∀x y, SNo xSNo yx y- y - x
Proof:
Proof not loaded.
Theorem. (minus_SNo_SNoCutP)
∀x, SNo xSNoCutP {- z|zSNoR x} {- w|wSNoL x}
Proof:
Proof not loaded.
Theorem. (minus_SNo_SNoCutP_gen)
∀L R, SNoCutP L RSNoCutP {- z|zR} {- w|wL}
Proof:
Proof not loaded.
Theorem. (minus_SNo_Lev_lem1)
∀alpha, ordinal alpha∀xSNoS_ alpha, SNoLev (- x) SNoLev x
Proof:
Proof not loaded.
Theorem. (minus_SNo_Lev_lem2)
∀x, SNo xSNoLev (- x) SNoLev x
Proof:
Proof not loaded.
Theorem. (minus_SNo_invol)
∀x, SNo x- - x = x
Proof:
Proof not loaded.
Theorem. (minus_SNo_Lev)
∀x, SNo xSNoLev (- x) = SNoLev x
Proof:
Proof not loaded.
Theorem. (minus_SNo_SNo_)
∀alpha, ordinal alpha∀x, SNo_ alpha xSNo_ alpha (- x)
Proof:
Proof not loaded.
Theorem. (minus_SNo_SNoS_)
∀alpha, ordinal alpha∀x, x SNoS_ alpha- x SNoS_ alpha
Proof:
Proof not loaded.
Theorem. (minus_SNoCut_eq_lem)
∀v, SNo v∀L R, SNoCutP L Rv = SNoCut L R- v = SNoCut {- z|zR} {- w|wL}
Proof:
Proof not loaded.
Theorem. (minus_SNoCut_eq)
∀L R, SNoCutP L R- SNoCut L R = SNoCut {- z|zR} {- w|wL}
Proof:
Proof not loaded.
Theorem. (minus_SNo_Lt_contra1)
∀x y, SNo xSNo y- x < y- y < x
Proof:
Proof not loaded.
Theorem. (minus_SNo_Lt_contra2)
∀x y, SNo xSNo yx < - yy < - x
Proof:
Proof not loaded.
Theorem. (mordinal_SNoLev_min_2)
∀alpha, ordinal alpha∀z, SNo zSNoLev z ordsucc alpha- alpha z
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (SNoL_minus_SNoR)
∀x, SNo xSNoL (- x) = {- w|wSNoR x}
Proof:
Proof not loaded.
End of Section SurrealMinus
Beginning of Section SurrealAdd
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Definition. We define add_SNo to be SNo_rec2 (λx y a ⇒ SNoCut ({a w y|wSNoL x} {a x w|wSNoL y}) ({a z y|zSNoR x} {a x z|zSNoR y})) of type setsetset.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Theorem. (add_SNo_eq)
∀x, SNo x∀y, SNo yx + y = SNoCut ({w + y|wSNoL x} {x + w|wSNoL y}) ({z + y|zSNoR x} {x + z|zSNoR y})
Proof:
Proof not loaded.
Theorem. (add_SNo_prop1)
∀x y, SNo xSNo ySNo (x + y) (∀uSNoL x, u + y < x + y) (∀uSNoR x, x + y < u + y) (∀uSNoL y, x + u < x + y) (∀uSNoR y, x + y < x + u) SNoCutP ({w + y|wSNoL x} {x + w|wSNoL y}) ({z + y|zSNoR x} {x + z|zSNoR y})
Proof:
Proof not loaded.
Theorem. (SNo_add_SNo)
∀x y, SNo xSNo ySNo (x + y)
Proof:
Proof not loaded.
Theorem. (SNo_add_SNo_3)
∀x y z, SNo xSNo ySNo zSNo (x + y + z)
Proof:
Proof not loaded.
Theorem. (SNo_add_SNo_3c)
∀x y z, SNo xSNo ySNo zSNo (x + y + - z)
Proof:
Proof not loaded.
Theorem. (SNo_add_SNo_4)
∀x y z w, SNo xSNo ySNo zSNo wSNo (x + y + z + w)
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt1)
∀x y z, SNo xSNo ySNo zx < zx + y < z + y
Proof:
Proof not loaded.
Theorem. (add_SNo_Le1)
∀x y z, SNo xSNo ySNo zx zx + y z + y
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt2)
∀x y z, SNo xSNo ySNo zy < zx + y < x + z
Proof:
Proof not loaded.
Theorem. (add_SNo_Le2)
∀x y z, SNo xSNo ySNo zy zx + y x + z
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt3a)
∀x y z w, SNo xSNo ySNo zSNo wx < zy wx + y < z + w
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt3b)
∀x y z w, SNo xSNo ySNo zSNo wx zy < wx + y < z + w
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt3)
∀x y z w, SNo xSNo ySNo zSNo wx < zy < wx + y < z + w
Proof:
Proof not loaded.
Theorem. (add_SNo_Le3)
∀x y z w, SNo xSNo ySNo zSNo wx zy wx + y z + w
Proof:
Proof not loaded.
Theorem. (add_SNo_SNoCutP)
∀x y, SNo xSNo ySNoCutP ({w + y|wSNoL x} {x + w|wSNoL y}) ({z + y|zSNoR x} {x + z|zSNoR y})
Proof:
Proof not loaded.
Theorem. (add_SNo_com)
∀x y, SNo xSNo yx + y = y + x
Proof:
Proof not loaded.
Theorem. (add_SNo_0L)
∀x, SNo x0 + x = x
Proof:
Proof not loaded.
Theorem. (add_SNo_0R)
∀x, SNo xx + 0 = x
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_SNo_linv)
∀x, SNo x- x + x = 0
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_SNo_rinv)
∀x, SNo xx + - x = 0
Proof:
Proof not loaded.
Theorem. (add_SNo_ordinal_SNoCutP)
∀alpha, ordinal alpha∀beta, ordinal betaSNoCutP ({x + beta|xSNoS_ alpha} {alpha + x|xSNoS_ beta}) Empty
Proof:
Proof not loaded.
Theorem. (add_SNo_ordinal_eq)
∀alpha, ordinal alpha∀beta, ordinal betaalpha + beta = SNoCut ({x + beta|xSNoS_ alpha} {alpha + x|xSNoS_ beta}) Empty
Proof:
Proof not loaded.
Theorem. (add_SNo_ordinal_ordinal)
∀alpha, ordinal alpha∀beta, ordinal betaordinal (alpha + beta)
Proof:
Proof not loaded.
Theorem. (add_SNo_ordinal_SL)
∀alpha, ordinal alpha∀beta, ordinal betaordsucc alpha + beta = ordsucc (alpha + beta)
Proof:
Proof not loaded.
Theorem. (add_SNo_ordinal_SR)
∀alpha, ordinal alpha∀beta, ordinal betaalpha + ordsucc beta = ordsucc (alpha + beta)
Proof:
Proof not loaded.
Theorem. (add_SNo_ordinal_InL)
∀alpha, ordinal alpha∀beta, ordinal beta∀gammaalpha, gamma + beta alpha + beta
Proof:
Proof not loaded.
Theorem. (add_SNo_ordinal_InR)
∀alpha, ordinal alpha∀beta, ordinal beta∀gammabeta, alpha + gamma alpha + beta
Proof:
Proof not loaded.
Theorem. (add_nat_add_SNo)
∀n mω, add_nat n m = n + m
Proof:
Proof not loaded.
Theorem. (add_SNo_In_omega)
∀n mω, n + m ω
Proof:
Proof not loaded.
Theorem. (add_SNo_1_1_2)
1 + 1 = 2
Proof:
Proof not loaded.
Theorem. (add_SNo_SNoL_interpolate)
∀x y, SNo xSNo y∀uSNoL (x + y), (∃vSNoL x, u v + y) (∃vSNoL y, u x + v)
Proof:
Proof not loaded.
Theorem. (add_SNo_SNoR_interpolate)
∀x y, SNo xSNo y∀uSNoR (x + y), (∃vSNoR x, v + y u) (∃vSNoR y, x + v u)
Proof:
Proof not loaded.
Theorem. (add_SNo_assoc)
∀x y z, SNo xSNo ySNo zx + (y + z) = (x + y) + z
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_R2)
∀x y, SNo xSNo y(x + y) + - y = x
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_R2')
∀x y, SNo xSNo y(x + - y) + y = x
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_L2)
∀x y, SNo xSNo y- x + (x + y) = y
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_L2')
∀x y, SNo xSNo yx + (- x + y) = y
Proof:
Proof not loaded.
Theorem. (add_SNo_cancel_L)
∀x y z, SNo xSNo ySNo zx + y = x + zy = z
Proof:
Proof not loaded.
Theorem. (add_SNo_cancel_R)
∀x y z, SNo xSNo ySNo zx + y = z + yx = z
Proof:
Proof not loaded.
Theorem. (minus_SNo_0)
- 0 = 0
Proof:
Proof not loaded.
Theorem. (minus_add_SNo_distr)
∀x y, SNo xSNo y- (x + y) = (- x) + (- y)
Proof:
Proof not loaded.
Theorem. (minus_add_SNo_distr_3)
∀x y z, SNo xSNo ySNo z- (x + y + z) = - x + - y + - z
Proof:
Proof not loaded.
Theorem. (add_SNo_Lev_bd)
∀x y, SNo xSNo ySNoLev (x + y) SNoLev x + SNoLev y
Proof:
Proof not loaded.
Theorem. (add_SNo_SNoS_omega)
∀x ySNoS_ ω, x + y SNoS_ ω
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt1_cancel)
∀x y z, SNo xSNo ySNo zx + y < z + yx < z
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt2_cancel)
∀x y z, SNo xSNo ySNo zx + y < x + zy < z
Proof:
Proof not loaded.
Theorem. (add_SNo_Le1_cancel)
∀x y z, SNo xSNo ySNo zx + y z + yx z
Proof:
Proof not loaded.
Theorem. (add_SNo_assoc_4)
∀x y z w, SNo xSNo ySNo zSNo wx + y + z + w = (x + y + z) + w
Proof:
Proof not loaded.
Theorem. (add_SNo_com_3_0_1)
∀x y z, SNo xSNo ySNo zx + y + z = y + x + z
Proof:
Proof not loaded.
Theorem. (add_SNo_com_3b_1_2)
∀x y z, SNo xSNo ySNo z(x + y) + z = (x + z) + y
Proof:
Proof not loaded.
Theorem. (add_SNo_com_4_inner_mid)
∀x y z w, SNo xSNo ySNo zSNo w(x + y) + (z + w) = (x + z) + (y + w)
Proof:
Proof not loaded.
Theorem. (add_SNo_rotate_3_1)
∀x y z, SNo xSNo ySNo zx + y + z = z + x + y
Proof:
Proof not loaded.
Theorem. (add_SNo_rotate_4_1)
∀x y z w, SNo xSNo ySNo zSNo wx + y + z + w = w + x + y + z
Proof:
Proof not loaded.
Theorem. (add_SNo_rotate_5_1)
∀x y z w v, SNo xSNo ySNo zSNo wSNo vx + y + z + w + v = v + x + y + z + w
Proof:
Proof not loaded.
Theorem. (add_SNo_rotate_5_2)
∀x y z w v, SNo xSNo ySNo zSNo wSNo vx + y + z + w + v = w + v + x + y + z
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_SNo_prop2)
∀x y, SNo xSNo yx + - x + y = y
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_SNo_prop3)
∀x y z w, SNo xSNo ySNo zSNo w(x + y + z) + (- z + w) = x + y + w
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_SNo_prop5)
∀x y z w, SNo xSNo ySNo zSNo w(x + y + - z) + (z + w) = x + y + w
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt1)
∀x y z, SNo xSNo ySNo zx + - y < zx < z + y
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt2)
∀x y z, SNo xSNo ySNo zz < x + - yz + y < x
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt1b)
∀x y z, SNo xSNo ySNo zx < z + yx + - y < z
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt2b)
∀x y z, SNo xSNo ySNo zz + y < xz < x + - y
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt1b3)
∀x y z w, SNo xSNo ySNo zSNo wx + y < w + zx + y + - z < w
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt2b3)
∀x y z w, SNo xSNo ySNo zSNo ww + z < x + yw < x + y + - z
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt_lem)
∀x y z u v w, SNo xSNo ySNo zSNo uSNo vSNo wx + y + w < u + v + zx + y + - z < u + v + - w
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Le2)
∀x y z, SNo xSNo ySNo zz x + - yz + y x
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Le2b)
∀x y z, SNo xSNo ySNo zz + y xz x + - y
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt_subprop2)
∀x y z w u v, SNo xSNo ySNo zSNo wSNo uSNo vx + u < z + vy + v < w + ux + y < z + w
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt_subprop3a)
∀x y z w u a, SNo xSNo ySNo zSNo wSNo uSNo ax + z < w + ay + a < ux + y + z < w + u
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt_subprop3b)
∀x y w u v a, SNo xSNo ySNo wSNo uSNo vSNo ax + a < w + vy < a + ux + y < w + u + v
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt_subprop3c)
∀x y z w u a b c, SNo xSNo ySNo zSNo wSNo uSNo aSNo bSNo cx + a < b + cy + c < ub + z < w + ax + y + z < w + u
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt_subprop3d)
∀x y w u v a b c, SNo xSNo ySNo wSNo uSNo vSNo aSNo bSNo cx + a < b + vy < c + ub + c < w + ax + y < w + u + v
Proof:
Proof not loaded.
Theorem. (ordinal_ordsucc_SNo_eq)
∀alpha, ordinal alphaordsucc alpha = 1 + alpha
Proof:
Proof not loaded.
Theorem. (add_SNo_3a_2b)
∀x y z w u, SNo xSNo ySNo zSNo wSNo u(x + y + z) + (w + u) = (u + y + z) + (w + x)
Proof:
Proof not loaded.
Theorem. (add_SNo_1_ordsucc)
∀nω, n + 1 = ordsucc n
Proof:
Proof not loaded.
Theorem. (add_SNo_eps_Lt)
∀x, SNo x∀nω, x < x + eps_ n
Proof:
Proof not loaded.
Theorem. (add_SNo_eps_Lt')
∀x y, SNo xSNo y∀nω, x < yx < y + eps_ n
Proof:
Proof not loaded.
Theorem. (SNoLt_minus_pos)
∀x y, SNo xSNo yx < y0 < y + - x
Proof:
Proof not loaded.
Theorem. (add_SNo_omega_In_cases)
∀m, ∀nω, ∀k, nat_p km n + km n m + - n k
Proof:
Proof not loaded.
Theorem. (add_SNo_Lt4)
∀x y z w u v, SNo xSNo ySNo zSNo wSNo uSNo vx < wy < uz < vx + y + z < w + u + v
Proof:
Proof not loaded.
Theorem. (add_SNo_3_3_3_Lt1)
∀x y z w u, SNo xSNo ySNo zSNo wSNo ux + y < z + wx + y + u < z + w + u
Proof:
Proof not loaded.
Theorem. (add_SNo_3_2_3_Lt1)
∀x y z w u, SNo xSNo ySNo zSNo wSNo uy + x < z + wx + u + y < z + w + u
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Lt12b3)
∀x y z w u v, SNo xSNo ySNo zSNo wSNo uSNo vx + y + v < w + u + zx + y + - z < w + u + - v
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Le1b)
∀x y z, SNo xSNo ySNo zx z + yx + - y z
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Le1b3)
∀x y z w, SNo xSNo ySNo zSNo wx + y w + zx + y + - z w
Proof:
Proof not loaded.
Theorem. (add_SNo_minus_Le12b3)
∀x y z w u v, SNo xSNo ySNo zSNo wSNo uSNo vx + y + v w + u + zx + y + - z w + u + - v
Proof:
Proof not loaded.
End of Section SurrealAdd
Beginning of Section SurrealAbs
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Definition. We define abs_SNo to be λx ⇒ if 0 x then x else - x of type setset.
Theorem. (nonneg_abs_SNo)
∀x, 0 xabs_SNo x = x
Proof:
Proof not loaded.
Theorem. (not_nonneg_abs_SNo)
∀x, ¬ (0 x)abs_SNo x = - x
Proof:
Proof not loaded.
Theorem. (pos_abs_SNo)
∀x, 0 < xabs_SNo x = x
Proof:
Proof not loaded.
Theorem. (neg_abs_SNo)
∀x, SNo xx < 0abs_SNo x = - x
Proof:
Proof not loaded.
Theorem. (SNo_abs_SNo)
∀x, SNo xSNo (abs_SNo x)
Proof:
Proof not loaded.
Theorem. (abs_SNo_minus)
∀x, SNo xabs_SNo (- x) = abs_SNo x
Proof:
Proof not loaded.
Theorem. (abs_SNo_dist_swap)
∀x y, SNo xSNo yabs_SNo (x + - y) = abs_SNo (y + - x)
Proof:
Proof not loaded.
End of Section SurrealAbs
Beginning of Section SurrealMul
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Definition. We define mul_SNo to be SNo_rec2 (λx y m ⇒ SNoCut ({m (w 0) y + m x (w 1) + - m (w 0) (w 1)|wSNoL x SNoL y} {m (z 0) y + m x (z 1) + - m (z 0) (z 1)|zSNoR x SNoR y}) ({m (w 0) y + m x (w 1) + - m (w 0) (w 1)|wSNoL x SNoR y} {m (z 0) y + m x (z 1) + - m (z 0) (z 1)|zSNoR x SNoL y})) of type setsetset.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Theorem. (mul_SNo_eq)
∀x, SNo x∀y, SNo yx * y = SNoCut ({(w 0) * y + x * (w 1) + - (w 0) * (w 1)|wSNoL x SNoL y} {(z 0) * y + x * (z 1) + - (z 0) * (z 1)|zSNoR x SNoR y}) ({(w 0) * y + x * (w 1) + - (w 0) * (w 1)|wSNoL x SNoR y} {(z 0) * y + x * (z 1) + - (z 0) * (z 1)|zSNoR x SNoL y})
Proof:
Proof not loaded.
Theorem. (mul_SNo_eq_2)
∀x y, SNo xSNo y∀p : prop, (∀L R, (∀u, u L(∀q : prop, (∀w0SNoL x, ∀w1SNoL y, u = w0 * y + x * w1 + - w0 * w1q)(∀z0SNoR x, ∀z1SNoR y, u = z0 * y + x * z1 + - z0 * z1q)q))(∀w0SNoL x, ∀w1SNoL y, w0 * y + x * w1 + - w0 * w1 L)(∀z0SNoR x, ∀z1SNoR y, z0 * y + x * z1 + - z0 * z1 L)(∀u, u R(∀q : prop, (∀w0SNoL x, ∀z1SNoR y, u = w0 * y + x * z1 + - w0 * z1q)(∀z0SNoR x, ∀w1SNoL y, u = z0 * y + x * w1 + - z0 * w1q)q))(∀w0SNoL x, ∀z1SNoR y, w0 * y + x * z1 + - w0 * z1 R)(∀z0SNoR x, ∀w1SNoL y, z0 * y + x * w1 + - z0 * w1 R)x * y = SNoCut L Rp)p
Proof:
Proof not loaded.
Theorem. (mul_SNo_prop_1)
∀x, SNo x∀y, SNo y∀p : prop, (SNo (x * y)(∀uSNoL x, ∀vSNoL y, u * y + x * v < x * y + u * v)(∀uSNoR x, ∀vSNoR y, u * y + x * v < x * y + u * v)(∀uSNoL x, ∀vSNoR y, x * y + u * v < u * y + x * v)(∀uSNoR x, ∀vSNoL y, x * y + u * v < u * y + x * v)p)p
Proof:
Proof not loaded.
Theorem. (SNo_mul_SNo)
∀x y, SNo xSNo ySNo (x * y)
Proof:
Proof not loaded.
Theorem. (SNo_mul_SNo_lem)
∀x y u v, SNo xSNo ySNo uSNo vSNo (u * y + x * v + - (u * v))
Proof:
Proof not loaded.
Theorem. (SNo_mul_SNo_3)
∀x y z, SNo xSNo ySNo zSNo (x * y * z)
Proof:
Proof not loaded.
Theorem. (mul_SNo_eq_3)
∀x y, SNo xSNo y∀p : prop, (∀L R, SNoCutP L R(∀u, u L(∀q : prop, (∀w0SNoL x, ∀w1SNoL y, u = w0 * y + x * w1 + - w0 * w1q)(∀z0SNoR x, ∀z1SNoR y, u = z0 * y + x * z1 + - z0 * z1q)q))(∀w0SNoL x, ∀w1SNoL y, w0 * y + x * w1 + - w0 * w1 L)(∀z0SNoR x, ∀z1SNoR y, z0 * y + x * z1 + - z0 * z1 L)(∀u, u R(∀q : prop, (∀w0SNoL x, ∀z1SNoR y, u = w0 * y + x * z1 + - w0 * z1q)(∀z0SNoR x, ∀w1SNoL y, u = z0 * y + x * w1 + - z0 * w1q)q))(∀w0SNoL x, ∀z1SNoR y, w0 * y + x * z1 + - w0 * z1 R)(∀z0SNoR x, ∀w1SNoL y, z0 * y + x * w1 + - z0 * w1 R)x * y = SNoCut L Rp)p
Proof:
Proof not loaded.
Theorem. (mul_SNo_Lt)
∀x y u v, SNo xSNo ySNo uSNo vu < xv < yu * y + x * v < x * y + u * v
Proof:
Proof not loaded.
Theorem. (mul_SNo_Le)
∀x y u v, SNo xSNo ySNo uSNo vu xv yu * y + x * v x * y + u * v
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoL_interpolate)
∀x y, SNo xSNo y∀uSNoL (x * y), (∃vSNoL x, ∃wSNoL y, u + v * w v * y + x * w) (∃vSNoR x, ∃wSNoR y, u + v * w v * y + x * w)
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoL_interpolate_impred)
∀x y, SNo xSNo y∀uSNoL (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoL y, u + v * w v * y + x * wp)(∀vSNoR x, ∀wSNoR y, u + v * w v * y + x * wp)p
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoR_interpolate)
∀x y, SNo xSNo y∀uSNoR (x * y), (∃vSNoL x, ∃wSNoR y, v * y + x * w u + v * w) (∃vSNoR x, ∃wSNoL y, v * y + x * w u + v * w)
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoR_interpolate_impred)
∀x y, SNo xSNo y∀uSNoR (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoR y, v * y + x * w u + v * wp)(∀vSNoR x, ∀wSNoL y, v * y + x * w u + v * wp)p
Proof:
Proof not loaded.
Theorem. (mul_SNo_Subq_lem)
∀x y X Y Z W, ∀U U', (∀u, u U(∀q : prop, (∀w0X, ∀w1Y, u = w0 * y + x * w1 + - w0 * w1q)(∀z0Z, ∀z1W, u = z0 * y + x * z1 + - z0 * z1q)q))(∀w0X, ∀w1Y, w0 * y + x * w1 + - w0 * w1 U')(∀w0Z, ∀w1W, w0 * y + x * w1 + - w0 * w1 U')U U'
Proof:
Proof not loaded.
Theorem. (mul_SNo_zeroR)
∀x, SNo xx * 0 = 0
Proof:
Proof not loaded.
Theorem. (mul_SNo_oneR)
∀x, SNo xx * 1 = x
Proof:
Proof not loaded.
Theorem. (mul_SNo_com)
∀x y, SNo xSNo yx * y = y * x
Proof:
Proof not loaded.
Theorem. (mul_SNo_minus_distrL)
∀x y, SNo xSNo y(- x) * y = - x * y
Proof:
Proof not loaded.
Theorem. (mul_SNo_minus_distrR)
∀x y, SNo xSNo yx * (- y) = - (x * y)
Proof:
Proof not loaded.
Theorem. (mul_SNo_distrR)
∀x y z, SNo xSNo ySNo z(x + y) * z = x * z + y * z
Proof:
Proof not loaded.
Theorem. (mul_SNo_distrL)
∀x y z, SNo xSNo ySNo zx * (y + z) = x * y + x * z
Proof:
Proof not loaded.
Beginning of Section mul_SNo_assoc_lems
Variable M : setsetset
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term M.
Hypothesis SNo_M : ∀x y, SNo xSNo ySNo (x * y)
Hypothesis DL : ∀x y z, SNo xSNo ySNo zx * (y + z) = x * y + x * z
Hypothesis DR : ∀x y z, SNo xSNo ySNo z(x + y) * z = x * z + y * z
Hypothesis IL : ∀x y, SNo xSNo y∀uSNoL (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoL y, u + v * w v * y + x * wp)(∀vSNoR x, ∀wSNoR y, u + v * w v * y + x * wp)p
Hypothesis IR : ∀x y, SNo xSNo y∀uSNoR (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoR y, v * y + x * w u + v * wp)(∀vSNoR x, ∀wSNoL y, v * y + x * w u + v * wp)p
Hypothesis M_Lt : ∀x y u v, SNo xSNo ySNo uSNo vu < xv < yu * y + x * v < x * y + u * v
Hypothesis M_Le : ∀x y u v, SNo xSNo ySNo uSNo vu xv yu * y + x * v x * y + u * v
Theorem. (mul_SNo_assoc_lem1)
∀x y z, SNo xSNo ySNo z(∀uSNoS_ (SNoLev x), u * (y * z) = (u * y) * z)(∀vSNoS_ (SNoLev y), x * (v * z) = (x * v) * z)(∀wSNoS_ (SNoLev z), x * (y * w) = (x * y) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), u * (v * z) = (u * v) * z)(∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), u * (y * w) = (u * y) * w)(∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), x * (v * w) = (x * v) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), u * (v * w) = (u * v) * w)∀L, (∀uL, ∀q : prop, (∀vSNoL x, ∀wSNoL (y * z), u = v * (y * z) + x * w + - v * wq)(∀vSNoR x, ∀wSNoR (y * z), u = v * (y * z) + x * w + - v * wq)q)∀uL, u < (x * y) * z
Proof:
Proof not loaded.
Theorem. (mul_SNo_assoc_lem2)
∀x y z, SNo xSNo ySNo z(∀uSNoS_ (SNoLev x), u * (y * z) = (u * y) * z)(∀vSNoS_ (SNoLev y), x * (v * z) = (x * v) * z)(∀wSNoS_ (SNoLev z), x * (y * w) = (x * y) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), u * (v * z) = (u * v) * z)(∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), u * (y * w) = (u * y) * w)(∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), x * (v * w) = (x * v) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), u * (v * w) = (u * v) * w)∀R, (∀uR, ∀q : prop, (∀vSNoL x, ∀wSNoR (y * z), u = v * (y * z) + x * w + - v * wq)(∀vSNoR x, ∀wSNoL (y * z), u = v * (y * z) + x * w + - v * wq)q)∀uR, (x * y) * z < u
Proof:
Proof not loaded.
End of Section mul_SNo_assoc_lems
Theorem. (mul_SNo_assoc)
∀x y z, SNo xSNo ySNo zx * (y * z) = (x * y) * z
Proof:
Proof not loaded.
Theorem. (mul_nat_mul_SNo)
∀n mω, mul_nat n m = n * m
Proof:
Proof not loaded.
Theorem. (mul_SNo_In_omega)
∀n mω, n * m ω
Proof:
Proof not loaded.
Theorem. (mul_SNo_zeroL)
∀x, SNo x0 * x = 0
Proof:
Proof not loaded.
Theorem. (mul_SNo_oneL)
∀x, SNo x1 * x = x
Proof:
Proof not loaded.
Theorem. (mul_SNo_rotate_3_1)
∀x y z, SNo xSNo ySNo zx * y * z = z * x * y
Proof:
Proof not loaded.
Theorem. (pos_mul_SNo_Lt)
∀x y z, SNo x0 < xSNo ySNo zy < zx * y < x * z
Proof:
Proof not loaded.
Theorem. (nonneg_mul_SNo_Le)
∀x y z, SNo x0 xSNo ySNo zy zx * y x * z
Proof:
Proof not loaded.
Theorem. (neg_mul_SNo_Lt)
∀x y z, SNo xx < 0SNo ySNo zz < yx * y < x * z
Proof:
Proof not loaded.
Theorem. (pos_mul_SNo_Lt')
∀x y z, SNo xSNo ySNo z0 < zx < yx * z < y * z
Proof:
Proof not loaded.
Theorem. (mul_SNo_Lt1_pos_Lt)
∀x y, SNo xSNo yx < 10 < yx * y < y
Proof:
Proof not loaded.
Theorem. (nonneg_mul_SNo_Le')
∀x y z, SNo xSNo ySNo z0 zx yx * z y * z
Proof:
Proof not loaded.
Theorem. (mul_SNo_Le1_nonneg_Le)
∀x y, SNo xSNo yx 10 yx * y y
Proof:
Proof not loaded.
Theorem. (pos_mul_SNo_Lt2)
∀x y z w, SNo xSNo ySNo zSNo w0 < x0 < yx < zy < wx * y < z * w
Proof:
Proof not loaded.
Theorem. (nonneg_mul_SNo_Le2)
∀x y z w, SNo xSNo ySNo zSNo w0 x0 yx zy wx * y z * w
Proof:
Proof not loaded.
Theorem. (mul_SNo_pos_pos)
∀x y, SNo xSNo y0 < x0 < y0 < x * y
Proof:
Proof not loaded.
Theorem. (mul_SNo_pos_neg)
∀x y, SNo xSNo y0 < xy < 0x * y < 0
Proof:
Proof not loaded.
Theorem. (mul_SNo_neg_pos)
∀x y, SNo xSNo yx < 00 < yx * y < 0
Proof:
Proof not loaded.
Theorem. (mul_SNo_neg_neg)
∀x y, SNo xSNo yx < 0y < 00 < x * y
Proof:
Proof not loaded.
Theorem. (mul_SNo_nonneg_nonneg)
∀x y, SNo xSNo y0 x0 y0 x * y
Proof:
Proof not loaded.
Theorem. (mul_SNo_nonpos_pos)
∀x y, SNo xSNo yx 00 < yx * y 0
Proof:
Proof not loaded.
Theorem. (mul_SNo_nonpos_neg)
∀x y, SNo xSNo yx 0y < 00 x * y
Proof:
Proof not loaded.
Theorem. (nonpos_mul_SNo_Le)
∀x y z, SNo xx 0SNo ySNo zz yx * y x * z
Proof:
Proof not loaded.
Theorem. (SNo_zero_or_sqr_pos)
∀x, SNo xx = 0 0 < x * x
Proof:
Proof not loaded.
Theorem. (SNo_pos_sqr_uniq)
∀x y, SNo xSNo y0 < x0 < yx * x = y * yx = y
Proof:
Proof not loaded.
Theorem. (SNo_nonneg_sqr_uniq)
∀x y, SNo xSNo y0 x0 yx * x = y * yx = y
Proof:
Proof not loaded.
Theorem. (SNo_foil)
∀x y z w, SNo xSNo ySNo zSNo w(x + y) * (z + w) = x * z + x * w + y * z + y * w
Proof:
Proof not loaded.
Theorem. (mul_SNo_minus_minus)
∀x y, SNo xSNo y(- x) * (- y) = x * y
Proof:
Proof not loaded.
Theorem. (mul_SNo_com_3_0_1)
∀x y z, SNo xSNo ySNo zx * y * z = y * x * z
Proof:
Proof not loaded.
Theorem. (mul_SNo_com_3b_1_2)
∀x y z, SNo xSNo ySNo z(x * y) * z = (x * z) * y
Proof:
Proof not loaded.
Theorem. (mul_SNo_com_4_inner_mid)
∀x y z w, SNo xSNo ySNo zSNo w(x * y) * (z * w) = (x * z) * (y * w)
Proof:
Proof not loaded.
Theorem. (SNo_foil_mm)
∀x y z w, SNo xSNo ySNo zSNo w(x + - y) * (z + - w) = x * z + - x * w + - y * z + y * w
Proof:
Proof not loaded.
Theorem. (mul_SNo_nonzero_cancel)
∀x y z, SNo xx 0SNo ySNo zx * y = x * zy = z
Proof:
Proof not loaded.
Theorem. (mul_SNoCutP_lem)
∀Lx Rx Ly Ry x y, SNoCutP Lx RxSNoCutP Ly Ryx = SNoCut Lx Rxy = SNoCut Ly RySNoCutP ({w 0 * y + x * w 1 + - w 0 * w 1|wLx Ly} {z 0 * y + x * z 1 + - z 0 * z 1|zRx Ry}) ({w 0 * y + x * w 1 + - w 0 * w 1|wLx Ry} {z 0 * y + x * z 1 + - z 0 * z 1|zRx Ly}) x * y = SNoCut ({w 0 * y + x * w 1 + - w 0 * w 1|wLx Ly} {z 0 * y + x * z 1 + - z 0 * z 1|zRx Ry}) ({w 0 * y + x * w 1 + - w 0 * w 1|wLx Ry} {z 0 * y + x * z 1 + - z 0 * z 1|zRx Ly}) ∀q : prop, (∀LxLy' RxRy' LxRy' RxLy', (∀uLxLy', ∀p : prop, (∀wLx, ∀w'Ly, SNo wSNo w'w < xw' < yu = w * y + x * w' + - w * w'p)p)(∀wLx, ∀w'Ly, w * y + x * w' + - w * w' LxLy')(∀uRxRy', ∀p : prop, (∀zRx, ∀z'Ry, SNo zSNo z'x < zy < z'u = z * y + x * z' + - z * z'p)p)(∀zRx, ∀z'Ry, z * y + x * z' + - z * z' RxRy')(∀uLxRy', ∀p : prop, (∀wLx, ∀zRy, SNo wSNo zw < xy < zu = w * y + x * z + - w * zp)p)(∀wLx, ∀zRy, w * y + x * z + - w * z LxRy')(∀uRxLy', ∀p : prop, (∀zRx, ∀wLy, SNo zSNo wx < zw < yu = z * y + x * w + - z * wp)p)(∀zRx, ∀wLy, z * y + x * w + - z * w RxLy')SNoCutP (LxLy' RxRy') (LxRy' RxLy')x * y = SNoCut (LxLy' RxRy') (LxRy' RxLy')q)q
Proof:
Proof not loaded.
Theorem. (mul_SNoCut_abs)
∀Lx Rx Ly Ry x y, SNoCutP Lx RxSNoCutP Ly Ryx = SNoCut Lx Rxy = SNoCut Ly Ry∀q : prop, (∀LxLy' RxRy' LxRy' RxLy', (∀uLxLy', ∀p : prop, (∀wLx, ∀w'Ly, SNo wSNo w'w < xw' < yu = w * y + x * w' + - w * w'p)p)(∀wLx, ∀w'Ly, w * y + x * w' + - w * w' LxLy')(∀uRxRy', ∀p : prop, (∀zRx, ∀z'Ry, SNo zSNo z'x < zy < z'u = z * y + x * z' + - z * z'p)p)(∀zRx, ∀z'Ry, z * y + x * z' + - z * z' RxRy')(∀uLxRy', ∀p : prop, (∀wLx, ∀zRy, SNo wSNo zw < xy < zu = w * y + x * z + - w * zp)p)(∀wLx, ∀zRy, w * y + x * z + - w * z LxRy')(∀uRxLy', ∀p : prop, (∀zRx, ∀wLy, SNo zSNo wx < zw < yu = z * y + x * w + - z * wp)p)(∀zRx, ∀wLy, z * y + x * w + - z * w RxLy')SNoCutP (LxLy' RxRy') (LxRy' RxLy')x * y = SNoCut (LxLy' RxRy') (LxRy' RxLy')q)q
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoCut_SNoL_interpolate)
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoL (x * y), (∃vLx, ∃wLy, u + v * w v * y + x * w) (∃vRx, ∃wRy, u + v * w v * y + x * w)
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoCut_SNoL_interpolate_impred)
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoL (x * y), ∀p : prop, (∀vLx, ∀wLy, u + v * w v * y + x * wp)(∀vRx, ∀wRy, u + v * w v * y + x * wp)p
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoCut_SNoR_interpolate)
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoR (x * y), (∃vLx, ∃wRy, v * y + x * w u + v * w) (∃vRx, ∃wLy, v * y + x * w u + v * w)
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoCut_SNoR_interpolate_impred)
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoR (x * y), ∀p : prop, (∀vLx, ∀wRy, v * y + x * w u + v * wp)(∀vRx, ∀wLy, v * y + x * w u + v * wp)p
Proof:
Proof not loaded.
Theorem. (nonpos_nonneg_0)
∀m nω, m = - nm = 0 n = 0
Proof:
Proof not loaded.
Theorem. (mul_minus_SNo_distrR)
∀x y, SNo xSNo yx * (- y) = - (x * y)
Proof:
Proof not loaded.
End of Section SurrealMul
Beginning of Section Int
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Definition. We define int to be ω {- n|nω} of type set.
Theorem. (int_SNo_cases)
∀p : setprop, (∀nω, p n)(∀nω, p (- n))∀xint, p x
Proof:
Proof not loaded.
Theorem. (int_3_cases)
∀nint, ∀p : prop, (∀mω, n = - ordsucc mp)(n = 0p)(∀mω, n = ordsucc mp)p
Proof:
Proof not loaded.
Theorem. (int_SNo)
∀xint, SNo x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (int_minus_SNo_omega)
∀nω, - n int
Proof:
Proof not loaded.
Theorem. (int_add_SNo_lem)
∀nω, ∀m, nat_p m- n + m int
Proof:
Proof not loaded.
Theorem. (int_add_SNo)
∀x yint, x + y int
Proof:
Proof not loaded.
Theorem. (int_minus_SNo)
∀xint, - x int
Proof:
Proof not loaded.
Theorem. (int_mul_SNo)
∀x yint, x * y int
Proof:
Proof not loaded.
Theorem. (nonneg_int_nat_p)
∀nint, 0 nnat_p n
Proof:
Proof not loaded.
End of Section Int
Beginning of Section BezoutAndGCD
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_nat.
Theorem. (quotient_remainder_nat)
∀nω {0}, ∀m, nat_p m∃qω, ∃rn, m = q * n + r
Proof:
Proof not loaded.
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Theorem. (mul_SNo_nonpos_nonneg)
∀x y, SNo xSNo yx 00 yx * y 0
Proof:
Proof not loaded.
Theorem. (ordinal_0_In_ordsucc)
∀alpha, ordinal alpha0 ordsucc alpha
Proof:
Proof not loaded.
Theorem. (ordinal_ordsucc_pos)
∀alpha, ordinal alpha0 < ordsucc alpha
Proof:
Proof not loaded.
Theorem. (quotient_remainder_int)
∀nω {0}, ∀mint, ∃qint, ∃rn, m = q * n + r
Proof:
Proof not loaded.
Definition. We define divides_int to be λm n ⇒ m int n int ∃kint, m * k = n of type setsetprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (divides_int_add_SNo)
∀m n k, divides_int m ndivides_int m kdivides_int m (n + k)
Proof:
Proof not loaded.
Theorem. (divides_int_mul_SNo)
∀m n m' n', divides_int m m'divides_int n n'divides_int (m * n) (m' * n')
Proof:
Proof not loaded.
Theorem. (divides_nat_divides_int)
∀m n, divides_nat m ndivides_int m n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (divides_int_minus_SNo)
∀m n, divides_int m ndivides_int m (- n)
Proof:
Proof not loaded.
Theorem. (divides_int_mul_SNo_L)
∀m n, ∀kint, divides_int m ndivides_int m (n * k)
Proof:
Proof not loaded.
Theorem. (divides_int_mul_SNo_R)
∀m n, ∀kint, divides_int m ndivides_int m (k * n)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (divides_int_pos_Le)
∀m n, divides_int m n0 < nm n
Proof:
Proof not loaded.
Definition. We define gcd_reln to be λm n d ⇒ divides_int d m divides_int d n ∀d', divides_int d' mdivides_int d' nd' d of type setsetsetprop.
Theorem. (gcd_reln_uniq)
∀a b c d, gcd_reln a b cgcd_reln a b dc = d
Proof:
Proof not loaded.
Definition. We define int_lin_comb to be λa b c ⇒ a int b int c int ∃m nint, m * a + n * b = c of type setsetsetprop.
Theorem. (int_lin_comb_I)
∀a b cint, (∃m nint, m * a + n * b = c)int_lin_comb a b c
Proof:
Proof not loaded.
Theorem. (int_lin_comb_E)
∀a b c, int_lin_comb a b c∀p : prop, (a intb intc int∀m nint, m * a + n * b = cp)p
Proof:
Proof not loaded.
Theorem. (int_lin_comb_E1)
∀a b c, int_lin_comb a b ca int
Proof:
Proof not loaded.
Theorem. (int_lin_comb_E2)
∀a b c, int_lin_comb a b cb int
Proof:
Proof not loaded.
Theorem. (int_lin_comb_E3)
∀a b c, int_lin_comb a b cc int
Proof:
Proof not loaded.
Theorem. (int_lin_comb_E4)
∀a b c, int_lin_comb a b c∀p : prop, (∀m nint, m * a + n * b = cp)p
Proof:
Proof not loaded.
Theorem. (least_pos_int_lin_comb_ex)
∀a bint, ¬ (a = 0 b = 0)∃c, int_lin_comb a b c 0 < c ∀c', int_lin_comb a b c'0 < c'c c'
Proof:
Proof not loaded.
Theorem. (int_lin_comb_sym)
∀a b d, int_lin_comb a b dint_lin_comb b a d
Proof:
Proof not loaded.
Theorem. (least_pos_int_lin_comb_divides_int)
∀a b d, int_lin_comb a b d0 < d(∀c, int_lin_comb a b c0 < cd c)divides_int d a
Proof:
Proof not loaded.
Theorem. (least_pos_int_lin_comb_gcd)
∀a b d, int_lin_comb a b d0 < d(∀c, int_lin_comb a b c0 < cd c)gcd_reln a b d
Proof:
Proof not loaded.
Theorem. (BezoutThm)
∀a bint, ¬ (a = 0 b = 0)∀d, gcd_reln a b d int_lin_comb a b d 0 < d ∀d', int_lin_comb a b d'0 < d'd d'
Proof:
Proof not loaded.
Theorem. (gcd_id)
∀mω {0}, gcd_reln m m m
Proof:
Proof not loaded.
Theorem. (gcd_0)
Proof:
Proof not loaded.
Theorem. (gcd_sym)
∀m n d, gcd_reln m n dgcd_reln n m d
Proof:
Proof not loaded.
Theorem. (gcd_minus)
∀m n d, gcd_reln m n dgcd_reln m (- n) d
Proof:
Proof not loaded.
Theorem. (euclidean_algorithm_prop_1)
∀m n d, n intgcd_reln m (n + - m) dgcd_reln m n d
Proof:
Proof not loaded.
Theorem. (euclidean_algorithm)
(∀mω {0}, gcd_reln m m m) (∀mω {0}, gcd_reln 0 m m) (∀mω {0}, gcd_reln m 0 m) (∀m nω, m < n∀d, gcd_reln m (n + - m) dgcd_reln m n d) (∀m nω, n < m∀d, gcd_reln n m dgcd_reln m n d) (∀mω, ∀nint, n < 0∀d, gcd_reln m (- n) dgcd_reln m n d) (∀m nint, m < 0∀d, gcd_reln (- m) n dgcd_reln m n d)
Proof:
Proof not loaded.
Theorem. (Euclid_lemma)
∀p, prime_nat p∀a bint, divides_int p (a * b)divides_int p a divides_int p b
Proof:
Proof not loaded.
End of Section BezoutAndGCD
Beginning of Section PrimeFactorization
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Proof:
Proof not loaded.
Definition. We define Pi_SNo to be λf n ⇒ nat_primrec 1 (λi r ⇒ r * f i) n of type (setset)setset.
Theorem. (Pi_SNo_0)
∀f : setset, Pi_SNo f 0 = 1
Proof:
Proof not loaded.
Theorem. (Pi_SNo_S)
∀f : setset, ∀n, nat_p nPi_SNo f (ordsucc n) = Pi_SNo f n * f n
Proof:
Proof not loaded.
Theorem. (Pi_SNo_In_omega)
∀f : setset, ∀n, nat_p n(∀in, f i ω)Pi_SNo f n ω
Proof:
Proof not loaded.
Theorem. (Pi_SNo_In_int)
∀f : setset, ∀n, nat_p n(∀in, f i int)Pi_SNo f n int
Proof:
Proof not loaded.
Theorem. (divides_int_prime_nat_eq)
∀p q, prime_nat pprime_nat qdivides_int p qp = q
Proof:
Proof not loaded.
Theorem. (Euclid_lemma_Pi_SNo)
∀f : setset, ∀p, prime_nat p∀n, nat_p n(∀in, f i int)divides_int p (Pi_SNo f n)∃in, divides_int p (f i)
Proof:
Proof not loaded.
Theorem. (divides_nat_mul_SNo_R)
∀m nω, divides_nat m (m * n)
Proof:
Proof not loaded.
Theorem. (divides_nat_mul_SNo_L)
∀m nω, divides_nat n (m * n)
Proof:
Proof not loaded.
Theorem. (Pi_SNo_divides)
∀f : setset, ∀n, nat_p n(∀in, f i ω)(∀in, divides_nat (f i) (Pi_SNo f n))
Proof:
Proof not loaded.
Definition. We define nonincrfinseq to be λA n f ⇒ ∀in, A (f i) ∀ji, f i f j of type (setprop)set(setset)prop.
Theorem. (Pi_SNo_eq)
∀f g : setset, ∀m, nat_p m(∀im, f i = g i)Pi_SNo f m = Pi_SNo g m
Proof:
Proof not loaded.
Theorem. (prime_factorization_ex_uniq)
∀n, nat_p n0 n∃kω, ∃f : setset, nonincrfinseq prime_nat k f Pi_SNo f k = n ∀k'ω, ∀f' : setset, nonincrfinseq prime_nat k' f'Pi_SNo f' k' = nk' = k ∀ik, f' i = f i
Proof:
Proof not loaded.
End of Section PrimeFactorization
Beginning of Section SurrealExp
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Definition. We define exp_SNo_nat to be λn m : setnat_primrec 1 (λ_ r ⇒ n * r) m of type setsetset.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Theorem. (exp_SNo_nat_0)
∀x, SNo xx ^ 0 = 1
Proof:
Proof not loaded.
Theorem. (exp_SNo_nat_S)
∀x, SNo x∀n, nat_p nx ^ (ordsucc n) = x * x ^ n
Proof:
Proof not loaded.
Theorem. (exp_SNo_nat_1)
∀x, SNo xx ^ 1 = x
Proof:
Proof not loaded.
Theorem. (SNo_exp_SNo_nat)
∀x, SNo x∀n, nat_p nSNo (x ^ n)
Proof:
Proof not loaded.
Theorem. (nat_exp_SNo_nat)
∀x, nat_p x∀n, nat_p nnat_p (x ^ n)
Proof:
Proof not loaded.
Theorem. (eps_ordsucc_half_add)
∀n, nat_p neps_ (ordsucc n) + eps_ (ordsucc n) = eps_ n
Proof:
Proof not loaded.
Theorem. (eps_1_half_eq1)
Proof:
Proof not loaded.
Theorem. (eps_1_half_eq2)
Proof:
Proof not loaded.
Theorem. (double_eps_1)
∀x y z, SNo xSNo ySNo zx + x = y + zx = eps_ 1 * (y + z)
Proof:
Proof not loaded.
Theorem. (exp_SNo_1_bd)
∀x, SNo x1 x∀n, nat_p n1 x ^ n
Proof:
Proof not loaded.
Theorem. (exp_SNo_2_bd)
∀n, nat_p nn < 2 ^ n
Proof:
Proof not loaded.
Theorem. (mul_SNo_eps_power_2)
∀n, nat_p neps_ n * 2 ^ n = 1
Proof:
Proof not loaded.
Theorem. (eps_bd_1)
∀nω, eps_ n 1
Proof:
Proof not loaded.
Theorem. (mul_SNo_eps_power_2')
∀n, nat_p n2 ^ n * eps_ n = 1
Proof:
Proof not loaded.
Theorem. (exp_SNo_nat_mul_add)
∀x, SNo x∀m, nat_p m∀n, nat_p nx ^ m * x ^ n = x ^ (m + n)
Proof:
Proof not loaded.
Theorem. (exp_SNo_nat_mul_add')
∀x, SNo x∀m nω, x ^ m * x ^ n = x ^ (m + n)
Proof:
Proof not loaded.
Theorem. (exp_SNo_nat_pos)
∀x, SNo x0 < x∀n, nat_p n0 < x ^ n
Proof:
Proof not loaded.
Theorem. (mul_SNo_eps_eps_add_SNo)
∀m nω, eps_ m * eps_ n = eps_ (m + n)
Proof:
Proof not loaded.
Theorem. (SNoS_omega_Lev_equip)
∀n, nat_p nequip {xSNoS_ ω|SNoLev x = n} (2 ^ n)
Proof:
Proof not loaded.
Theorem. (SNoS_finite)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section SurrealExp
Beginning of Section SNoMaxMin
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Definition. We define SNo_max_of to be λX x ⇒ x X SNo x ∀yX, SNo yy x of type setsetprop.
Definition. We define SNo_min_of to be λX x ⇒ x X SNo x ∀yX, SNo yx y of type setsetprop.
Theorem. (minus_SNo_max_min)
∀X y, (∀xX, SNo x)SNo_max_of X ySNo_min_of {- x|xX} (- y)
Proof:
Proof not loaded.
Theorem. (minus_SNo_max_min')
∀X y, (∀xX, SNo x)SNo_max_of {- x|xX} ySNo_min_of X (- y)
Proof:
Proof not loaded.
Theorem. (minus_SNo_min_max)
∀X y, (∀xX, SNo x)SNo_min_of X ySNo_max_of {- x|xX} (- y)
Proof:
Proof not loaded.
Theorem. (double_SNo_max_1)
∀x y, SNo xSNo_max_of (SNoL x) y∀z, SNo zx < zy + z < x + x∃wSNoR z, y + w = x + x
Proof:
Proof not loaded.
Theorem. (double_SNo_min_1)
∀x y, SNo xSNo_min_of (SNoR x) y∀z, SNo zz < xx + x < y + z∃wSNoL z, y + w = x + x
Proof:
Proof not loaded.
Theorem. (finite_max_exists)
∀X, (∀xX, SNo x)finite XX 0∃x, SNo_max_of X x
Proof:
Proof not loaded.
Theorem. (finite_min_exists)
∀X, (∀xX, SNo x)finite XX 0∃x, SNo_min_of X x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section SNoMaxMin
Beginning of Section DiadicRationals
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Proof:
Proof not loaded.
Definition. We define diadic_rational_p to be λx ⇒ ∃kω, ∃mint, x = eps_ k * m of type setprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (SNoS_omega_diadic_rational_p_lem)
∀n, nat_p n∀x, SNo xSNoLev x = ndiadic_rational_p x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (mul_SNo_SNoS_omega)
∀x ySNoS_ ω, x * y SNoS_ ω
Proof:
Proof not loaded.
End of Section DiadicRationals
Beginning of Section SurrealDiv
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Definition. We define SNoL_pos to be λx ⇒ {wSNoL x|0 < w} of type setset.
Theorem. (SNo_recip_pos_pos)
∀x xi, SNo xSNo xi0 < xx * xi = 10 < xi
Proof:
Proof not loaded.
Theorem. (SNo_recip_lem1)
∀x x' x'i y y', SNo x0 < xx' SNoL_pos xSNo x'ix' * x'i = 1SNo yx * y < 1SNo y'1 + - x * y' = (1 + - x * y) * (x' + - x) * x'i1 < x * y'
Proof:
Proof not loaded.
Theorem. (SNo_recip_lem2)
∀x x' x'i y y', SNo x0 < xx' SNoL_pos xSNo x'ix' * x'i = 1SNo y1 < x * ySNo y'1 + - x * y' = (1 + - x * y) * (x' + - x) * x'ix * y' < 1
Proof:
Proof not loaded.
Theorem. (SNo_recip_lem3)
∀x x' x'i y y', SNo x0 < xx' SNoR xSNo x'ix' * x'i = 1SNo yx * y < 1SNo y'1 + - x * y' = (1 + - x * y) * (x' + - x) * x'ix * y' < 1
Proof:
Proof not loaded.
Theorem. (SNo_recip_lem4)
∀x x' x'i y y', SNo x0 < xx' SNoR xSNo x'ix' * x'i = 1SNo y1 < x * ySNo y'1 + - x * y' = (1 + - x * y) * (x' + - x) * x'i1 < x * y'
Proof:
Proof not loaded.
Definition. We define SNo_recipauxset to be λY x X g ⇒ yY{(1 + (x' + - x) * y) * g x'|x'X} of type setsetset(setset)set.
Theorem. (SNo_recipauxset_I)
∀Y x X, ∀g : setset, ∀yY, ∀x'X, (1 + (x' + - x) * y) * g x' SNo_recipauxset Y x X g
Proof:
Proof not loaded.
Theorem. (SNo_recipauxset_E)
∀Y x X, ∀g : setset, ∀zSNo_recipauxset Y x X g, ∀p : prop, (∀yY, ∀x'X, z = (1 + (x' + - x) * y) * g x'p)p
Proof:
Proof not loaded.
Theorem. (SNo_recipauxset_ext)
∀Y x X, ∀g h : setset, (∀x'X, g x' = h x')SNo_recipauxset Y x X g = SNo_recipauxset Y x X h
Proof:
Proof not loaded.
Definition. We define SNo_recipaux to be λx g ⇒ nat_primrec ({0},0) (λk p ⇒ (p 0 SNo_recipauxset (p 0) x (SNoR x) g SNo_recipauxset (p 1) x (SNoL_pos x) g,p 1 SNo_recipauxset (p 0) x (SNoL_pos x) g SNo_recipauxset (p 1) x (SNoR x) g)) of type set(setset)setset.
Theorem. (SNo_recipaux_0)
∀x, ∀g : setset, SNo_recipaux x g 0 = ({0},0)
Proof:
Proof not loaded.
Theorem. (SNo_recipaux_S)
∀x, ∀g : setset, ∀n, nat_p nSNo_recipaux x g (ordsucc n) = (SNo_recipaux x g n 0 SNo_recipauxset (SNo_recipaux x g n 0) x (SNoR x) g SNo_recipauxset (SNo_recipaux x g n 1) x (SNoL_pos x) g,SNo_recipaux x g n 1 SNo_recipauxset (SNo_recipaux x g n 0) x (SNoL_pos x) g SNo_recipauxset (SNo_recipaux x g n 1) x (SNoR x) g)
Proof:
Proof not loaded.
Theorem. (SNo_recipaux_lem1)
∀x, SNo x0 < x∀g : setset, (∀x'SNoS_ (SNoLev x), 0 < x'SNo (g x') x' * g x' = 1)∀k, nat_p k(∀ySNo_recipaux x g k 0, SNo y x * y < 1) (∀ySNo_recipaux x g k 1, SNo y 1 < x * y)
Proof:
Proof not loaded.
Theorem. (SNo_recipaux_lem2)
∀x, SNo x0 < x∀g : setset, (∀x'SNoS_ (SNoLev x), 0 < x'SNo (g x') x' * g x' = 1)SNoCutP (kωSNo_recipaux x g k 0) (kωSNo_recipaux x g k 1)
Proof:
Proof not loaded.
Theorem. (SNo_recipaux_ext)
∀x, SNo x∀g h : setset, (∀x'SNoS_ (SNoLev x), g x' = h x')∀k, nat_p kSNo_recipaux x g k = SNo_recipaux x h k
Proof:
Proof not loaded.
Beginning of Section recip_SNo_pos
Let G : set(setset)setλx g ⇒ SNoCut (kωSNo_recipaux x g k 0) (kωSNo_recipaux x g k 1)
Definition. We define recip_SNo_pos to be SNo_rec_i G of type setset.
Theorem. (recip_SNo_pos_eq)
∀x, SNo xrecip_SNo_pos x = G x recip_SNo_pos
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_prop1)
∀x, SNo x0 < xSNo (recip_SNo_pos x) x * recip_SNo_pos x = 1
Proof:
Proof not loaded.
Theorem. (SNo_recip_SNo_pos)
∀x, SNo x0 < xSNo (recip_SNo_pos x)
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_invR)
∀x, SNo x0 < xx * recip_SNo_pos x = 1
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_is_pos)
∀x, SNo x0 < x0 < recip_SNo_pos x
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_invol)
∀x, SNo x0 < xrecip_SNo_pos (recip_SNo_pos x) = x
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_eps_)
∀n, nat_p nrecip_SNo_pos (eps_ n) = 2 ^ n
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_pow_2)
∀n, nat_p nrecip_SNo_pos (2 ^ n) = eps_ n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section recip_SNo_pos
Definition. We define recip_SNo to be λx ⇒ if 0 < x then recip_SNo_pos x else if x < 0 then - recip_SNo_pos (- x) else 0 of type setset.
Theorem. (recip_SNo_poscase)
∀x, 0 < xrecip_SNo x = recip_SNo_pos x
Proof:
Proof not loaded.
Theorem. (recip_SNo_negcase)
∀x, SNo xx < 0recip_SNo x = - recip_SNo_pos (- x)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (SNo_recip_SNo)
∀x, SNo xSNo (recip_SNo x)
Proof:
Proof not loaded.
Theorem. (recip_SNo_invR)
∀x, SNo xx 0x * recip_SNo x = 1
Proof:
Proof not loaded.
Theorem. (recip_SNo_invL)
∀x, SNo xx 0recip_SNo x * x = 1
Proof:
Proof not loaded.
Theorem. (mul_SNo_nonzero_cancel_L)
∀x y z, SNo xx 0SNo ySNo zx * y = x * zy = z
Proof:
Proof not loaded.
Theorem. (recip_SNo_pow_2)
∀n, nat_p nrecip_SNo (2 ^ n) = eps_ n
Proof:
Proof not loaded.
Theorem. (recip_SNo_of_pos_is_pos)
∀x, SNo x0 < x0 < recip_SNo x
Proof:
Proof not loaded.
Definition. We define div_SNo to be λx y ⇒ x * recip_SNo y of type setsetset.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Theorem. (SNo_div_SNo)
∀x y, SNo xSNo ySNo (x :/: y)
Proof:
Proof not loaded.
Theorem. (div_SNo_0_num)
∀x, SNo x0 :/: x = 0
Proof:
Proof not loaded.
Theorem. (div_SNo_0_denum)
∀x, SNo xx :/: 0 = 0
Proof:
Proof not loaded.
Theorem. (mul_div_SNo_invL)
∀x y, SNo xSNo yy 0(x :/: y) * y = x
Proof:
Proof not loaded.
Theorem. (mul_div_SNo_invR)
∀x y, SNo xSNo yy 0y * (x :/: y) = x
Proof:
Proof not loaded.
Theorem. (mul_div_SNo_R)
∀x y z, SNo xSNo ySNo z(x :/: y) * z = (x * z) :/: y
Proof:
Proof not loaded.
Theorem. (mul_div_SNo_L)
∀x y z, SNo xSNo ySNo zz * (x :/: y) = (z * x) :/: y
Proof:
Proof not loaded.
Theorem. (div_mul_SNo_invL)
∀x y, SNo xSNo yy 0(x * y) :/: y = x
Proof:
Proof not loaded.
Theorem. (div_div_SNo)
∀x y z, SNo xSNo ySNo z(x :/: y) :/: z = x :/: (y * z)
Proof:
Proof not loaded.
Theorem. (mul_div_SNo_both)
∀x y z w, SNo xSNo ySNo zSNo w(x :/: y) * (z :/: w) = (x * z) :/: (y * w)
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_pos)
∀x, SNo x0 < x0 < recip_SNo_pos x
Proof:
Proof not loaded.
Theorem. (div_SNo_pos_pos)
∀x y, SNo xSNo y0 < x0 < y0 < x :/: y
Proof:
Proof not loaded.
Theorem. (div_SNo_neg_pos)
∀x y, SNo xSNo yx < 00 < yx :/: y < 0
Proof:
Proof not loaded.
Theorem. (div_SNo_pos_LtL)
∀x y z, SNo xSNo ySNo z0 < yx < z * yx :/: y < z
Proof:
Proof not loaded.
Theorem. (div_SNo_pos_LtR)
∀x y z, SNo xSNo ySNo z0 < yz * y < xz < x :/: y
Proof:
Proof not loaded.
Theorem. (div_SNo_pos_LtL')
∀x y z, SNo xSNo ySNo z0 < yx :/: y < zx < z * y
Proof:
Proof not loaded.
Theorem. (div_SNo_pos_LtR')
∀x y z, SNo xSNo ySNo z0 < yz < x :/: yz * y < x
Proof:
Proof not loaded.
Theorem. (mul_div_SNo_nonzero_eq)
∀x y z, SNo xSNo ySNo zy 0x = y * zx :/: y = z
Proof:
Proof not loaded.
End of Section SurrealDiv
Beginning of Section Reals
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Theorem. (SNoS_omega_drat_intvl)
∀xSNoS_ ω, ∀kω, ∃qSNoS_ ω, q < x x < q + eps_ k
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_above)
∀xSNoS_ (ordsucc ω), x < ω∃Nω, x < N
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_below)
∀xSNoS_ (ordsucc ω), - ω < x∃Nω, - N < x
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_drat_intvl)
∀xSNoS_ (ordsucc ω), - ω < xx < ω∀kω, ∃qSNoS_ ω, q < x x < q + eps_ k
Proof:
Proof not loaded.
Definition. We define real to be {xSNoS_ (ordsucc ω)|x ω x - ω (∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)} of type set.
Theorem. (real_I)
∀xSNoS_ (ordsucc ω), x ωx - ω(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)x real
Proof:
Proof not loaded.
Theorem. (real_E)
∀xreal, ∀p : prop, (SNo xSNoLev x ordsucc ωx SNoS_ (ordsucc ω)- ω < xx < ω(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃qSNoS_ ω, q < x x < q + eps_ k)p)p
Proof:
Proof not loaded.
Theorem. (real_SNo)
∀xreal, SNo x
Proof:
Proof not loaded.
Theorem. (real_SNoS_omega_prop)
∀xreal, ∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (real_0)
Proof:
Proof not loaded.
Theorem. (real_1)
Proof:
Proof not loaded.
Theorem. (SNoLev_In_real_SNoS_omega)
∀xreal, ∀w, SNo wSNoLev w SNoLev xw SNoS_ ω
Proof:
Proof not loaded.
Theorem. (real_SNoCut_SNoS_omega)
∀L RSNoS_ ω, SNoCutP L RL 0R 0(∀wL, ∃w'L, w < w')(∀zR, ∃z'R, z' < z)SNoCut L R real
Proof:
Proof not loaded.
Theorem. (real_SNoCut)
∀L Rreal, SNoCutP L RL 0R 0(∀wL, ∃w'L, w < w')(∀zR, ∃z'R, z' < z)SNoCut L R real
Proof:
Proof not loaded.
Theorem. (minus_SNo_prereal_1)
∀x, SNo x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀qSNoS_ ω, (∀kω, abs_SNo (q + - - x) < eps_ k)q = - x)
Proof:
Proof not loaded.
Theorem. (minus_SNo_prereal_2)
∀x, SNo x(∀kω, ∃qSNoS_ ω, q < x x < q + eps_ k)(∀kω, ∃qSNoS_ ω, q < - x - x < q + eps_ k)
Proof:
Proof not loaded.
Theorem. (SNo_prereal_incr_lower_pos)
∀x, SNo x0 < x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃qSNoS_ ω, q < x x < q + eps_ k)∀kω, ∀p : prop, (∀qSNoS_ ω, 0 < qq < xx < q + eps_ kp)p
Proof:
Proof not loaded.
Theorem. (real_minus_SNo)
Proof:
Proof not loaded.
Theorem. (SNo_prereal_incr_lower_approx)
∀x, SNo x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃qSNoS_ ω, q < x x < q + eps_ k)∃fSNoS_ ωω, ∀nω, f n < x x < f n + eps_ n ∀in, f i < f n
Proof:
Proof not loaded.
Theorem. (SNo_prereal_decr_upper_approx)
∀x, SNo x(∀qSNoS_ ω, (∀kω, abs_SNo (q + - x) < eps_ k)q = x)(∀kω, ∃qSNoS_ ω, q < x x < q + eps_ k)∃gSNoS_ ωω, ∀nω, g n + - eps_ n < x x < g n ∀in, g n < g i
Proof:
Proof not loaded.
Theorem. (SNoCutP_SNoCut_lim)
∀lambda, ordinal lambda(∀alphalambda, ordsucc alpha lambda)∀L RSNoS_ lambda, SNoCutP L RSNoLev (SNoCut L R) ordsucc lambda
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (SNo_approx_real_lem)
∀f gSNoS_ ωω, (∀n mω, f n < g m)∀p : prop, (SNoCutP {f n|nω} {g n|nω}SNo (SNoCut {f n|nω} {g n|nω})SNoLev (SNoCut {f n|nω} {g n|nω}) ordsucc ωSNoCut {f n|nω} {g n|nω} SNoS_ (ordsucc ω)(∀nω, f n < SNoCut {f n|nω} {g n|nω})(∀nω, SNoCut {f n|nω} {g n|nω} < g n)p)p
Proof:
Proof not loaded.
Theorem. (SNo_approx_real)
∀x, SNo x∀f gSNoS_ ωω, (∀nω, f n < x)(∀nω, x < f n + eps_ n)(∀nω, ∀in, f i < f n)(∀nω, x < g n)(∀nω, ∀in, g n < g i)x = SNoCut {f n|nω} {g n|nω}x real
Proof:
Proof not loaded.
Theorem. (SNo_approx_real_rep)
∀xreal, ∀p : prop, (∀f gSNoS_ ωω, (∀nω, f n < x)(∀nω, x < f n + eps_ n)(∀nω, ∀in, f i < f n)(∀nω, g n + - eps_ n < x)(∀nω, x < g n)(∀nω, ∀in, g n < g i)SNoCutP {f n|nω} {g n|nω}x = SNoCut {f n|nω} {g n|nω}p)p
Proof:
Proof not loaded.
Theorem. (real_add_SNo)
∀x yreal, x + y real
Proof:
Proof not loaded.
Theorem. (SNoS_ordsucc_omega_bdd_eps_pos)
∀xSNoS_ (ordsucc ω), 0 < xx < ω∃Nω, eps_ N * x < 1
Proof:
Proof not loaded.
Theorem. (real_mul_SNo_pos)
∀x yreal, 0 < x0 < yx * y real
Proof:
Proof not loaded.
Theorem. (real_mul_SNo)
∀x yreal, x * y real
Proof:
Proof not loaded.
Theorem. (nonneg_real_nat_interval)
∀xreal, 0 x∃nω, n x x < ordsucc n
Proof:
Proof not loaded.
Theorem. (pos_real_left_approx_double)
∀xreal, 0 < xx 2(∀mω, x eps_ m)∃wSNoL_pos x, x < 2 * w
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (real_div_SNo)
∀x yreal, x :/: y real
Proof:
Proof not loaded.
End of Section Reals
Beginning of Section even_odd
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_nat.
Theorem. (nat_le2_cases)
∀m, nat_p mm 2m = 0 m = 1 m = 2
Proof:
Proof not loaded.
Theorem. (prime_nat_2_lem)
∀m, nat_p m∀n, nat_p nm * n = 2m = 1 m = 2
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Theorem. (not_eq_2m_2n1)
∀m nint, 2 * m 2 * n + 1
Proof:
Proof not loaded.
End of Section even_odd
Beginning of Section form100_22b
Let tag : setsetλalpha ⇒ SetAdjoin alpha {1}
Notation. We use ' as a postfix operator with priority 100 corresponding to applying term tag.
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Proof:
Proof not loaded.
Theorem. (Repl_finite)
∀f : setset, ∀X, finite Xfinite {f x|xX}
Proof:
Proof not loaded.
Theorem. (infinite_bigger)
∀Xω, infinite X∀mω, ∃nX, m n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section form100_22b
Beginning of Section rational
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Definition. We define rational to be {xreal|∃mint, ∃nω {0}, x = m :/: n} of type set.
End of Section rational
Beginning of Section form100_3
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define nat_pair to be λm n ⇒ 2 ^ m * (2 * n + 1) of type setsetset.
Theorem. (nat_pair_In_omega)
∀m nω, nat_pair m n ω
Proof:
Proof not loaded.
Theorem. (nat_pair_0)
∀m n m' n'ω, nat_pair m n = nat_pair m' n'm = m'
Proof:
Proof not loaded.
Theorem. (nat_pair_1)
∀m n m' n'ω, nat_pair m n = nat_pair m' n'n = n'
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section form100_3
Beginning of Section SurrealSqrt
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Definition. We define SNoL_nonneg to be λx ⇒ {wSNoL x|0 w} of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define SNo_sqrtauxset to be λY Z x ⇒ yY{(x + y * z) :/: (y + z)|zZ, 0 < y + z} of type setsetsetset.
Theorem. (SNo_sqrtauxset_I)
∀Y Z x, ∀yY, ∀zZ, 0 < y + z(x + y * z) :/: (y + z) SNo_sqrtauxset Y Z x
Proof:
Proof not loaded.
Theorem. (SNo_sqrtauxset_E)
∀Y Z x, ∀uSNo_sqrtauxset Y Z x, ∀p : prop, (∀yY, ∀zZ, 0 < y + zu = (x + y * z) :/: (y + z)p)p
Proof:
Proof not loaded.
Theorem. (SNo_sqrtauxset_0)
∀Z x, SNo_sqrtauxset 0 Z x = 0
Proof:
Proof not loaded.
Theorem. (SNo_sqrtauxset_0')
∀Y x, SNo_sqrtauxset Y 0 x = 0
Proof:
Proof not loaded.
Definition. We define SNo_sqrtaux to be λx g ⇒ nat_primrec ({g w|wSNoL_nonneg x},{g z|zSNoR x}) (λk p ⇒ (p 0 SNo_sqrtauxset (p 0) (p 1) x,p 1 SNo_sqrtauxset (p 0) (p 0) x SNo_sqrtauxset (p 1) (p 1) x)) of type set(setset)setset.
Theorem. (SNo_sqrtaux_0)
∀x, ∀g : setset, SNo_sqrtaux x g 0 = ({g w|wSNoL_nonneg x},{g z|zSNoR x})
Proof:
Proof not loaded.
Theorem. (SNo_sqrtaux_S)
∀x, ∀g : setset, ∀n, nat_p nSNo_sqrtaux x g (ordsucc n) = (SNo_sqrtaux x g n 0 SNo_sqrtauxset (SNo_sqrtaux x g n 0) (SNo_sqrtaux x g n 1) x,SNo_sqrtaux x g n 1 SNo_sqrtauxset (SNo_sqrtaux x g n 0) (SNo_sqrtaux x g n 0) x SNo_sqrtauxset (SNo_sqrtaux x g n 1) (SNo_sqrtaux x g n 1) x)
Proof:
Proof not loaded.
Theorem. (SNo_sqrtaux_mon_lem)
∀x, ∀g : setset, ∀m, nat_p m∀n, nat_p nSNo_sqrtaux x g m 0 SNo_sqrtaux x g (add_nat m n) 0 SNo_sqrtaux x g m 1 SNo_sqrtaux x g (add_nat m n) 1
Proof:
Proof not loaded.
Theorem. (SNo_sqrtaux_mon)
∀x, ∀g : setset, ∀m, nat_p m∀n, nat_p nm nSNo_sqrtaux x g m 0 SNo_sqrtaux x g n 0 SNo_sqrtaux x g m 1 SNo_sqrtaux x g n 1
Proof:
Proof not loaded.
Theorem. (SNo_sqrtaux_ext)
∀x, SNo x∀g h : setset, (∀x'SNoS_ (SNoLev x), g x' = h x')∀k, nat_p kSNo_sqrtaux x g k = SNo_sqrtaux x h k
Proof:
Proof not loaded.
Beginning of Section sqrt_SNo_nonneg
Let G : set(setset)setλx g ⇒ SNoCut (kωSNo_sqrtaux x g k 0) (kωSNo_sqrtaux x g k 1)
Definition. We define sqrt_SNo_nonneg to be SNo_rec_i G of type setset.
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_prop1a)
∀x, SNo x0 x(∀wSNoS_ (SNoLev x), 0 wSNo (sqrt_SNo_nonneg w) 0 sqrt_SNo_nonneg w sqrt_SNo_nonneg w * sqrt_SNo_nonneg w = w)∀k, nat_p k(∀ySNo_sqrtaux x sqrt_SNo_nonneg k 0, SNo y 0 y y * y < x) (∀ySNo_sqrtaux x sqrt_SNo_nonneg k 1, SNo y 0 y x < y * y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_prop1c)
∀x, SNo x0 xSNoCutP (kωSNo_sqrtaux x sqrt_SNo_nonneg k 0) (kωSNo_sqrtaux x sqrt_SNo_nonneg k 1)(∀z(kωSNo_sqrtaux x sqrt_SNo_nonneg k 1), ∀p : prop, (SNo z0 zx < z * zp)p)0 G x sqrt_SNo_nonneg
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section sqrt_SNo_nonneg
Theorem. (SNo_sqrtaux_0_1_prop)
∀x, SNo x0 x∀k, nat_p k(∀ySNo_sqrtaux x sqrt_SNo_nonneg k 0, SNo y 0 y y * y < x) (∀ySNo_sqrtaux x sqrt_SNo_nonneg k 1, SNo y 0 y x < y * y)
Proof:
Proof not loaded.
Theorem. (SNo_sqrtaux_0_prop)
∀x, SNo x0 x∀k, nat_p k∀ySNo_sqrtaux x sqrt_SNo_nonneg k 0, SNo y 0 y y * y < x
Proof:
Proof not loaded.
Theorem. (SNo_sqrtaux_1_prop)
∀x, SNo x0 x∀k, nat_p k∀ySNo_sqrtaux x sqrt_SNo_nonneg k 1, SNo y 0 y x < y * y
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (SNo_sqrt_SNo_nonneg)
∀x, SNo x0 xSNo (sqrt_SNo_nonneg x)
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_nonneg)
∀x, SNo x0 x0 sqrt_SNo_nonneg x
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_sqr)
∀x, SNo x0 xsqrt_SNo_nonneg x * sqrt_SNo_nonneg x = x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (sqrt_SNo_nonneg_0inL0)
∀x, SNo x0 x0 SNoLev x0 SNo_sqrtaux x sqrt_SNo_nonneg 0 0
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (SNo_sqrtauxset_real)
∀Y Z x, Y realZ realx realSNo_sqrtauxset Y Z x real
Proof:
Proof not loaded.
Theorem. (SNo_sqrtauxset_real_nonneg)
∀Y Z x, Y {wreal|0 w}Z {zreal|0 z}x real0 xSNo_sqrtauxset Y Z x {wreal|0 w}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
End of Section SurrealSqrt
Beginning of Section form100_1
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Theorem. (divides_int_div_SNo_int)
∀m n, divides_int m nn :/: m int
Proof:
Proof not loaded.
Theorem. (form100_1_lem1)
∀m, nat_p m∀n, nat_p nm * m = 2 * n * nn = 0
Proof:
Proof not loaded.
Theorem. (form100_1_lem2)
∀mω, ∀nω 1, m * m 2 * n * n
Proof:
Proof not loaded.
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use :/: as an infix operator with priority 353 and no associativity corresponding to applying term div_SNo.
Proof:
Proof not loaded.
End of Section form100_1
Beginning of Section Topology
Definition. We define topology_on to be λX T ⇒ T 𝒫 X Empty T X T (∀UFam𝒫 T, UFam T) (∀UT, ∀VT, U V T) of type setsetprop.
Theorem. (topology_sub_Power)
∀X T : set, topology_on X TT 𝒫 X
Proof:
Proof not loaded.
Definition. We define open_in to be λX T U ⇒ topology_on X T U T of type setsetsetprop.
Theorem. (open_in_topology)
∀X T U : set, open_in X T Utopology_on X T
Proof:
Proof not loaded.
Theorem. (open_in_elem)
∀X T U : set, open_in X T UU T
Proof:
Proof not loaded.
Theorem. (open_inI)
∀X T U : set, topology_on X TU Topen_in X T U
Proof:
Proof not loaded.
Theorem. (Eps_i_unique)
∀P : setprop, ∀x : set, P x(∀y : set, P yy = x)Eps_i P = x
Proof:
Proof not loaded.
Theorem. (open_in_subset)
∀X T U : set, open_in X T UU X
Proof:
Proof not loaded.
Theorem. (topology_elem_subset)
∀X T U : set, topology_on X TU TU X
Proof:
Proof not loaded.
Theorem. (topology_has_empty)
∀X T : set, topology_on X TEmpty T
Proof:
Proof not loaded.
Theorem. (topology_has_X)
∀X T : set, topology_on X TX T
Proof:
Proof not loaded.
Theorem. (topology_subset_axiom)
∀X T : set, topology_on X TT 𝒫 X
Proof:
Proof not loaded.
Theorem. (topology_union_closed)
∀X T UFam : set, topology_on X TUFam T UFam T
Proof:
Proof not loaded.
Theorem. (topology_union_closed_pow)
∀X T UFam : set, topology_on X TUFam 𝒫 T UFam T
Proof:
Proof not loaded.
Theorem. (topology_union_axiom)
∀X T : set, topology_on X T∀UFam𝒫 T, UFam T
Proof:
Proof not loaded.
Theorem. (topology_binintersect_closed)
∀X T U V : set, topology_on X TU TV TU V T
Proof:
Proof not loaded.
Theorem. (topology_binintersect_axiom)
∀X T : set, topology_on X T∀UT, ∀VT, U V T
Proof:
Proof not loaded.
Theorem. (Empty_is_open)
∀X T : set, topology_on X Topen_in X T Empty
Proof:
Proof not loaded.
Theorem. (X_is_open)
∀X T : set, topology_on X Topen_in X T X
Proof:
Proof not loaded.
Theorem. (union_open)
∀X T UFam : set, topology_on X T(∀UUFam, open_in X T U)open_in X T ( UFam)
Proof:
Proof not loaded.
Theorem. (binintersect_open)
∀X T U V : set, open_in X T Uopen_in X T Vopen_in X T (U V)
Proof:
Proof not loaded.
Definition. We define closed_in to be λX T C ⇒ topology_on X T (C X ∃UT, C = X U) of type setsetsetprop.
Theorem. (closed_in_topology)
∀X T C : set, closed_in X T Ctopology_on X T
Proof:
Proof not loaded.
Theorem. (closed_in_package)
∀X T C : set, closed_in X T CC X ∃UT, C = X U
Proof:
Proof not loaded.
Theorem. (closed_inI)
∀X T C : set, topology_on X TC X(∃UT, C = X U)closed_in X T C
Proof:
Proof not loaded.
Theorem. (tuple_2_setprod_by_pair_Sigma)
∀X Y : set, ∀x y : set, x Xy Y(x,y) setprod X Y
Proof:
Proof not loaded.
Theorem. (closed_in_exists_open_complement)
∀X T C : set, closed_in X T C∃UT, C = X U
Proof:
Proof not loaded.
Theorem. (closed_in_subset)
∀X T C : set, closed_in X T CC X
Proof:
Proof not loaded.
Theorem. (closed_of_open_complement)
∀X T U : set, topology_on X TU Tclosed_in X T (X U)
Proof:
Proof not loaded.
Theorem. (X_is_closed)
∀X T : set, topology_on X Tclosed_in X T X
Proof:
Proof not loaded.
Theorem. (Empty_is_closed)
∀X T : set, topology_on X Tclosed_in X T Empty
Proof:
Proof not loaded.
Theorem. (closed_binintersect)
∀X T C D : set, closed_in X T Cclosed_in X T Dclosed_in X T (C D)
Proof:
Proof not loaded.
Theorem. (closed_binunion)
∀X T C D : set, closed_in X T Cclosed_in X T Dclosed_in X T (C D)
Proof:
Proof not loaded.
Theorem. (open_of_closed_complement)
∀X T C : set, closed_in X T Copen_in X T (X C)
Proof:
Proof not loaded.
Theorem. (binunion_eq_Union_pair)
∀X Y : set, X Y = {X,Y}
Proof:
Proof not loaded.
Theorem. (topology_binunion_closed)
∀X T U V : set, topology_on X TU TV TU V T
Proof:
Proof not loaded.
Theorem. (binunion_open)
∀X T U V : set, open_in X T Uopen_in X T Vopen_in X T (U V)
Proof:
Proof not loaded.
Definition. We define finer_than to be λT' T ⇒ T T' of type setsetprop.
Definition. We define coarser_than to be λT' T ⇒ T' T of type setsetprop.
Definition. We define discrete_topology to be λX ⇒ 𝒫 X of type setset.
Definition. We define indiscrete_topology to be λX ⇒ {Empty,X} of type setset.
Definition. We define finite_complement_topology to be λX ⇒ {U𝒫 X|finite (X U) U = Empty} of type setset.
Definition. We define countable to be λX ⇒ atleastp X ω of type setprop.
Theorem. (finite_countable)
∀X : set, finite Xcountable X
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Subq_countable)
∀X Y : set, countable YX Ycountable X
Proof:
Proof not loaded.
Theorem. (binintersect_countable_left)
∀X Y : set, countable Xcountable (X Y)
Proof:
Proof not loaded.
Theorem. (setminus_countable)
∀X A : set, countable Xcountable (X A)
Proof:
Proof not loaded.
Theorem. (binunion_countable)
∀X Y : set, countable Xcountable Ycountable (X Y)
Proof:
Proof not loaded.
Theorem. (Sigma_countable)
∀X : set, countable X∀Y : setset, (∀x : set, x Xcountable (Y x))countable (xX, Y x)
Proof:
Proof not loaded.
Theorem. (setprod_countable)
∀X Y : set, countable Xcountable Ycountable (X Y)
Proof:
Proof not loaded.
Theorem. (Union_Power)
∀X Fam : set, Fam 𝒫 X Fam X
Proof:
Proof not loaded.
Theorem. (binintersect_Power)
∀X U V : set, U 𝒫 XV 𝒫 XU V 𝒫 X
Proof:
Proof not loaded.
Theorem. (binintersect_Empty_left)
∀A : set, Empty A = Empty
Proof:
Proof not loaded.
Theorem. (binintersect_Empty_right)
∀A : set, A Empty = Empty
Proof:
Proof not loaded.
Theorem. (setminus_Power)
∀X U : set, U 𝒫 XX U 𝒫 X
Proof:
Proof not loaded.
Definition. We define countable_complement_topology to be λX ⇒ {U𝒫 X|countable (X U) U = Empty} of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (finer_than_refl)
∀T : set, finer_than T T
Proof:
Proof not loaded.
Theorem. (finer_than_trans)
∀A B C : set, finer_than B Afiner_than C Bfiner_than C A
Proof:
Proof not loaded.
Theorem. (finer_coarser_dual)
∀T T' : set, finer_than T' Tcoarser_than T T'
Proof:
Proof not loaded.
Definition. We define comparable_topologies to be λT1 T2 ⇒ finer_than T1 T2 finer_than T2 T1 of type setsetprop.
Definition. We define topology_eq to be λX T1 T2 ⇒ topology_on X T1 topology_on X T2 T1 = T2 of type setsetsetprop.
Theorem. (topology_eq_sym)
∀X T1 T2 : set, topology_eq X T1 T2topology_eq X T2 T1
Proof:
Proof not loaded.
Theorem. (topology_eq_trans)
∀X T1 T2 T3 : set, topology_eq X T1 T2topology_eq X T2 T3topology_eq X T1 T3
Proof:
Proof not loaded.
Theorem. (topology_eq_refl)
∀X T : set, topology_on X Ttopology_eq X T T
Proof:
Proof not loaded.
Definition. We define strictly_finer_than to be λT' T ⇒ finer_than T' T ¬ finer_than T T' of type setsetprop.
Definition. We define strictly_coarser_than to be λT' T ⇒ coarser_than T' T ¬ coarser_than T T' of type setsetprop.
Definition. We define discrete_topology_alt to be discrete_topology of type setset.
Definition. We define trivial_topology to be indiscrete_topology of type setset.
Definition. We define finer_than_topology to be λX T' T ⇒ topology_on X T' topology_on X T finer_than T' T of type setsetsetprop.
Theorem. (finer_than_def)
∀T T' : set, finer_than T' T coarser_than T T'
Proof:
Proof not loaded.
Theorem. (discrete_topology_finest)
∀X T : set, topology_on X Tfiner_than (discrete_topology X) T
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (discrete_open_all)
∀X U : set, U XU discrete_topology X
Proof:
Proof not loaded.
Theorem. (indiscrete_open_iff)
∀X U : set, U indiscrete_topology X (U = Empty U = X)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define finer_than_topology_by_inclusion to be finer_than_topology of type setsetsetprop.
Proof:
Proof not loaded.
Theorem. (lemma_union_of_topology_family_open)
∀X T UFam : set, topology_on X TUFam 𝒫 T UFam T
Proof:
Proof not loaded.
Theorem. (lemma_intersection_two_open)
∀X T U V : set, topology_on X TU TV TU V T
Proof:
Proof not loaded.
Definition. We define topological_space to be topology_on of type setsetprop.
Definition. We define open_set_family to be λ_ T ⇒ T of type setsetset.
Definition. We define open_set to be open_in of type setsetsetprop.
Definition. We define basis_on to be λX B ⇒ B 𝒫 X (∀xX, ∃bB, x b) (∀b1B, ∀b2B, ∀x : set, x b1x b2∃b3B, x b3 b3 b1 b2) of type setsetprop.
Theorem. (basis_on_sub_Power)
∀X B : set, basis_on X BB 𝒫 X
Proof:
Proof not loaded.
Theorem. (basis_on_cover)
∀X B : set, basis_on X B∀xX, ∃bB, x b
Proof:
Proof not loaded.
Theorem. (basis_on_refine)
∀X B : set, basis_on X B∀b1B, ∀b2B, ∀x : set, x b1x b2∃b3B, x b3 b3 b1 b2
Proof:
Proof not loaded.
Definition. We define generated_topology to be λX B ⇒ {U𝒫 X|∀xU, ∃bB, x b b U} of type setsetset.
Theorem. (generated_topology_local_refine)
∀X B U x : set, U generated_topology X Bx U∃bB, x b b U
Proof:
Proof not loaded.
Theorem. (generated_topology_contains_elem)
∀X B U : set, U 𝒫 XU BU generated_topology X B
Proof:
Proof not loaded.
Theorem. (basis_elem_subset)
∀X B b : set, basis_on X Bb Bb X
Proof:
Proof not loaded.
Theorem. (basis_in_generated)
∀X B b : set, basis_on X Bb Bb generated_topology X B
Proof:
Proof not loaded.
Theorem. (generated_topology_subset)
∀X B U : set, U generated_topology X BU X
Proof:
Proof not loaded.
Theorem. (lemma_topology_from_basis)
∀X B : set, basis_on X Btopology_on X (generated_topology X B)
Proof:
Proof not loaded.
Theorem. (generated_topology_contains_basis)
∀X B : set, basis_on X B∀b : set, b Bb generated_topology X B
Proof:
Proof not loaded.
Theorem. (generated_topology_finer_weak)
∀X B T : set, topology_on X T(∀bB, b T)finer_than T (generated_topology X B)
Proof:
Proof not loaded.
Definition. We define basis_generates to be λX B T ⇒ basis_on X B generated_topology X B = T of type setsetsetprop.
Definition. We define basis_refines to be λX B T ⇒ topology_on X T (∀UT, ∀xU, ∃bB, x b b U) of type setsetsetprop.
Theorem. (lemma_generated_topology_characterization)
∀X B : set, basis_on X Bgenerated_topology X B = {U𝒫 X|∀xU, ∃bB, x b b U}
Proof:
Proof not loaded.
Theorem. (open_sets_as_unions_of_basis)
∀X B : set, basis_on X B∀U : set, open_in X (generated_topology X B) U∃Fam𝒫 B, Fam = U
Proof:
Proof not loaded.
Theorem. (basis_generates_open_sets)
∀X B : set, basis_on X B∀U : set, (∃Fam𝒫 B, Fam = U)open_in X (generated_topology X B) U
Proof:
Proof not loaded.
Theorem. (open_as_union_of_basis_elements)
∀X B : set, basis_on X B∀U : set, open_in X (generated_topology X B) UU = {bB|b U}
Proof:
Proof not loaded.
Theorem. (basis_refines_topology)
∀X T C : set, topology_on X T(∀cC, c T)(∀UT, ∀xU, ∃CxC, x Cx Cx U)basis_on X C generated_topology X C = T
Proof:
Proof not loaded.
Theorem. (lemma13_2_basis_from_open_subcollection)
∀X T C : set, topology_on X T(∀cC, c T)(∀UT, ∀xU, ∃cC, x c c U)basis_on X C generated_topology X C = T
Proof:
Proof not loaded.
Theorem. (finer_via_basis)
∀X B B' : set, basis_on X Bbasis_on X B'(∀xX, ∀b : set, b Bx b∃b'B', x b' b' b)finer_than (generated_topology X B') (generated_topology X B)
Proof:
Proof not loaded.
Theorem. (basis_finer_equiv_condition)
∀X B B' : set, basis_on X Bbasis_on X B'((∀xX, ∀bB, x b∃b'B', x b' b' b) finer_than (generated_topology X B') (generated_topology X B))
Proof:
Proof not loaded.
Theorem. (generated_topology_finer)
∀X B T : set, basis_on X Btopology_on X T(∀bB, b T)finer_than T (generated_topology X B)
Proof:
Proof not loaded.
Theorem. (topology_generated_by_basis_is_smallest)
∀X B T : set, basis_on X Btopology_on X T(∀bB, b T)finer_than T (generated_topology X B)
Proof:
Proof not loaded.
Theorem. (union_of_basis_equals_open)
∀X B : set, basis_on X Bgenerated_topology X B = { Fam|Fam𝒫 B}
Proof:
Proof not loaded.
Definition. We define singleton_basis to be λX ⇒ {{x}|xX} of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define R to be real of type set.
Definition. We define Q to be rational of type set.
Definition. We define Rlt to be λa b ⇒ a R b R a < b of type setsetprop.
Definition. We define Rle to be λa b ⇒ a R b R ¬ (Rlt b a) of type setsetprop.
Theorem. (RleI)
∀a b : set, a Rb R¬ (Rlt b a)Rle a b
Proof:
Proof not loaded.
Theorem. (RleE_left)
∀a b : set, Rle a ba R
Proof:
Proof not loaded.
Theorem. (RleE_right)
∀a b : set, Rle a bb R
Proof:
Proof not loaded.
Theorem. (RleE_nlt)
∀a b : set, Rle a b¬ (Rlt b a)
Proof:
Proof not loaded.
Theorem. (Rle_neq_implies_Rlt)
∀a b : set, Rle a b¬ (a = b)Rlt a b
Proof:
Proof not loaded.
Theorem. (Rle_minus_nonneg)
∀t : set, t R¬ (Rlt t 0)Rle (minus_SNo t) 0
Proof:
Proof not loaded.
Theorem. (RltI)
∀a b : set, a Rb Ra < bRlt a b
Proof:
Proof not loaded.
Theorem. (RltE_left)
∀a b : set, Rlt a ba R
Proof:
Proof not loaded.
Theorem. (RltE_right)
∀a b : set, Rlt a bb R
Proof:
Proof not loaded.
Theorem. (RltE_lt)
∀a b : set, Rlt a ba < b
Proof:
Proof not loaded.
Theorem. (Rlt_tra)
∀a b c : set, Rlt a bRlt b cRlt a c
Proof:
Proof not loaded.
Theorem. (not_Rlt_refl)
∀a : set, a R¬ (Rlt a a)
Proof:
Proof not loaded.
Theorem. (not_Rlt_sym)
∀a b : set, Rlt a b¬ (Rlt b a)
Proof:
Proof not loaded.
Theorem. (Rlt_0_diff_of_lt)
∀a b : set, Rlt a bRlt 0 (add_SNo b (minus_SNo a))
Proof:
Proof not loaded.
Theorem. (Rlt_implies_Rle)
∀a b : set, Rlt a bRle a b
Proof:
Proof not loaded.
Theorem. (Rle_refl)
∀a : set, a RRle a a
Proof:
Proof not loaded.
Theorem. (R_eq_of_not_Rlt)
∀a b : set, a Rb R¬ (Rlt a b)¬ (Rlt b a)a = b
Proof:
Proof not loaded.
Theorem. (Rle_antisym)
∀a b : set, Rle a bRle b aa = b
Proof:
Proof not loaded.
Theorem. (SNoLe_of_Rle)
∀a b : set, Rle a ba b
Proof:
Proof not loaded.
Theorem. (Rlt_0_1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define EuclidPlane to be setprod R R of type set.
Definition. We define R2_xcoord to be λp ⇒ p 0 of type setset.
Definition. We define R2_ycoord to be λp ⇒ p 1 of type setset.
Theorem. (EuclidPlane_xcoord_in_R)
∀p : set, p EuclidPlaneR2_xcoord p R
Proof:
Proof not loaded.
Theorem. (EuclidPlane_ycoord_in_R)
∀p : set, p EuclidPlaneR2_ycoord p R
Proof:
Proof not loaded.
Theorem. (R2_xcoord_tuple)
∀x y : set, R2_xcoord (x,y) = x
Proof:
Proof not loaded.
Theorem. (R2_ycoord_tuple)
∀x y : set, R2_ycoord (x,y) = y
Proof:
Proof not loaded.
Theorem. (tuple_eq_coords)
∀x1 y1 x2 y2 : set, (x1,y1) = (x2,y2)x1 = x2 y1 = y2
Proof:
Proof not loaded.
Theorem. (tuple_coords_eq)
∀x1 y1 x2 y2 : set, x1 = x2y1 = y2(x1,y1) = (x2,y2)
Proof:
Proof not loaded.
Theorem. (coords_eq_tuple)
∀x1 y1 x2 y2 : set, x1 = x2y1 = y2(x1,y1) = (x2,y2)
Proof:
Proof not loaded.
Theorem. (EuclidPlane_eta)
∀p : set, p EuclidPlane(R2_xcoord p,R2_ycoord p) = p
Proof:
Proof not loaded.
Theorem. (tuple_eq_coords_R2)
∀x1 y1 x2 y2 : set, (x1,y1) = (x2,y2)x1 = x2 y1 = y2
Proof:
Proof not loaded.
Definition. We define distance_R2 to be λp c ⇒ sqrt_SNo_nonneg (add_SNo (mul_SNo (add_SNo (R2_xcoord p) (minus_SNo (R2_xcoord c))) (add_SNo (R2_xcoord p) (minus_SNo (R2_xcoord c)))) (mul_SNo (add_SNo (R2_ycoord p) (minus_SNo (R2_ycoord c))) (add_SNo (R2_ycoord p) (minus_SNo (R2_ycoord c))))) of type setsetset.
Theorem. (distance_R2_in_R)
∀p c : set, p EuclidPlanec EuclidPlanedistance_R2 p c R
Proof:
Proof not loaded.
Theorem. (distance_R2_nonneg)
∀p c : set, p EuclidPlanec EuclidPlane0 distance_R2 p c
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (abs_SNo_sqr_eq)
∀x : set, SNo xmul_SNo (abs_SNo x) (abs_SNo x) = mul_SNo x x
Proof:
Proof not loaded.
Theorem. (SNoLe_add_nonneg_right)
∀x y : set, SNo xSNo y0 yx add_SNo x y
Proof:
Proof not loaded.
Theorem. (SNo_sqr_nonneg)
∀x : set, SNo x0 mul_SNo x x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (abs_SNo_nonneg)
∀x : set, SNo x0 abs_SNo x
Proof:
Proof not loaded.
Theorem. (SNo_sqr_lt_of_lt_nonneg)
∀x y : set, SNo xSNo y0 xx < ymul_SNo x x < mul_SNo y y
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (abs_SNo_lt_imp_lt)
∀t r : set, SNo tSNo r0 < rabs_SNo t < rt < r
Proof:
Proof not loaded.
Theorem. (abs_SNo_lt_imp_neg_lt)
∀t r : set, SNo tSNo r0 < rabs_SNo t < rminus_SNo t < r
Proof:
Proof not loaded.
Theorem. (SNo_lt_of_abs_diff_and_margin)
∀a x y r : set, SNo aSNo xSNo ySNo r0 < ra < add_SNo x (minus_SNo r)abs_SNo (add_SNo x (minus_SNo y)) < ra < y
Proof:
Proof not loaded.
Theorem. (abs_xcoord_lt_of_distance_lt)
∀p x r : set, p EuclidPlanex EuclidPlaner RRlt (distance_R2 p x) rabs_SNo (add_SNo (R2_xcoord p) (minus_SNo (R2_xcoord x))) < r
Proof:
Proof not loaded.
Theorem. (abs_ycoord_lt_of_distance_lt)
∀p x r : set, p EuclidPlanex EuclidPlaner RRlt (distance_R2 p x) rabs_SNo (add_SNo (R2_ycoord p) (minus_SNo (R2_ycoord x))) < r
Proof:
Proof not loaded.
Theorem. (distance_R2_refl_0)
∀p : set, p EuclidPlanedistance_R2 p p = 0
Proof:
Proof not loaded.
Theorem. (distance_R2_sym)
∀p c : set, p EuclidPlanec EuclidPlanedistance_R2 p c = distance_R2 c p
Proof:
Proof not loaded.
Theorem. (SNo_nonneg_ne0_pos)
∀x : set, SNo x0 xx 00 < x
Proof:
Proof not loaded.
Theorem. (SNoLt_sqr_nonneg)
∀x y : set, SNo xSNo y0 x0 yx < ymul_SNo x x < mul_SNo y y
Proof:
Proof not loaded.
Theorem. (SNo_nonneg_sqr_Le_imp_Le)
∀x y : set, SNo xSNo y0 x0 ymul_SNo x x mul_SNo y yx y
Proof:
Proof not loaded.
Theorem. (CauchySchwarz2_sq)
∀a b c d : set, SNo aSNo bSNo cSNo dmul_SNo (add_SNo (mul_SNo a c) (mul_SNo b d)) (add_SNo (mul_SNo a c) (mul_SNo b d)) mul_SNo (add_SNo (mul_SNo a a) (mul_SNo b b)) (add_SNo (mul_SNo c c) (mul_SNo d d))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (distance_R2_triangle_Rle)
∀x y z : set, x EuclidPlaney EuclidPlanez EuclidPlaneRle (distance_R2 x z) (add_SNo (distance_R2 x y) (distance_R2 y z))
Proof:
Proof not loaded.
Theorem. (distance_R2_eq0)
∀p c : set, p EuclidPlanec EuclidPlanedistance_R2 p c = 0p = c
Proof:
Proof not loaded.
Theorem. (distance_R2_not_Rlt_0)
∀p c : set, p EuclidPlanec EuclidPlane¬ (Rlt (distance_R2 p c) 0)
Proof:
Proof not loaded.
Definition. We define circular_regions to be {U𝒫 EuclidPlane|∃c : set, ∃r : set, c EuclidPlane Rlt 0 r U = {pEuclidPlane|Rlt (distance_R2 p c) r}} of type set.
Proof:
Proof not loaded.
Definition. We define rectangular_regions to be {U𝒫 EuclidPlane|∃a b c d : set, a R b R c R d R Rlt a b Rlt c d U = {pEuclidPlane|∃x y : set, p = (x,y) Rlt a x Rlt x b Rlt c y Rlt y d}} of type set.
Theorem. (rectangular_regionI)
∀a b c d : set, a Rb Rc Rd RRlt a bRlt c d{pEuclidPlane|∃x y : set, p = (x,y) Rlt a x Rlt x b Rlt c y Rlt y d} rectangular_regions
Proof:
Proof not loaded.
Theorem. (exists_eps_lt_pos_Euclid)
∀d : set, d RRlt 0 d∃Nω, eps_ N < d
Proof:
Proof not loaded.
Theorem. (exists_eps_lt_two_pos_Euclid)
∀a b : set, a Rb RRlt 0 aRlt 0 b∃r3 : set, r3 R Rlt 0 r3 Rlt r3 a Rlt r3 b
Proof:
Proof not loaded.
Theorem. (exists_eps_lt_four_pos_Euclid)
∀a b c d : set, a Rb Rc Rd RRlt 0 aRlt 0 bRlt 0 cRlt 0 d∃r3 : set, r3 R Rlt 0 r3 Rlt r3 a Rlt r3 b Rlt r3 c Rlt r3 d
Proof:
Proof not loaded.
Theorem. (Rle_Rlt_tra_Euclid)
∀a b c : set, Rle a bRlt b cRlt a c
Proof:
Proof not loaded.
Theorem. (ball_refine_two_balls)
∀x c1 c2 r1 r2 : set, x EuclidPlanec1 EuclidPlanec2 EuclidPlaneRlt 0 r1Rlt 0 r2Rlt (distance_R2 x c1) r1Rlt (distance_R2 x c2) r2∃r3 : set, Rlt 0 r3 (∀p : set, p EuclidPlaneRlt (distance_R2 p x) r3Rlt (distance_R2 p c1) r1 Rlt (distance_R2 p c2) r2)
Proof:
Proof not loaded.
Theorem. (abs_diff_lt_of_between)
∀x y r : set, x Ry Rr RRlt 0 rRlt (add_SNo y (minus_SNo r)) xRlt x (add_SNo y r)abs_SNo (add_SNo x (minus_SNo y)) < r
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (rectangle_inside_ball)
∀x c r0 : set, x EuclidPlanec EuclidPlaneRlt 0 r0Rlt (distance_R2 x c) r0∃rrectangular_regions, x r r {pEuclidPlane|Rlt (distance_R2 p c) r0}
Proof:
Proof not loaded.
Theorem. (ball_inside_rectangle)
∀b x : set, b rectangular_regionsx EuclidPlanex b∃r3 : set, Rlt 0 r3 (∀p : set, p EuclidPlaneRlt (distance_R2 p x) r3p b)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define subbasis_on to be λX S ⇒ S 𝒫 X S = X of type setsetprop.
Definition. We define intersection_of_family to be λX Fam ⇒ {xX|∀U : set, U Famx U} of type setsetset.
Definition. We define finite_subcollections to be λS ⇒ {F𝒫 S|finite F} of type setset.
Theorem. (intersection_of_familyI)
∀X Fam x : set, x X(∀U : set, U Famx U)x intersection_of_family X Fam
Proof:
Proof not loaded.
Theorem. (intersection_of_familyE1)
∀X Fam x : set, x intersection_of_family X Famx X
Proof:
Proof not loaded.
Theorem. (intersection_of_familyE2)
∀X Fam x : set, x intersection_of_family X Fam∀U : set, U Famx U
Proof:
Proof not loaded.
Definition. We define finite_intersections_of to be λX S ⇒ {intersection_of_family X F|Ffinite_subcollections S} of type setsetset.
Definition. We define basis_of_subbasis to be λX S ⇒ {bfinite_intersections_of X S|b Empty} of type setsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (intersection_of_family_singleton_eq)
∀X s : set, s Xintersection_of_family X {s} = s
Proof:
Proof not loaded.
Theorem. (subbasis_elem_in_basis)
∀X S s : set, subbasis_on X Ss Ss Emptys basis_of_subbasis X S
Proof:
Proof not loaded.
Theorem. (X_in_basis_of_subbasis)
∀X S : set, X EmptyX basis_of_subbasis X S
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (finite_intersection_in_topology)
∀X T F : set, topology_on X TF 𝒫 Tfinite Fintersection_of_family X F T
Proof:
Proof not loaded.
Definition. We define generated_topology_from_subbasis to be λX S ⇒ generated_topology X (basis_of_subbasis X S) of type setsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex13_1_local_open_subset)
∀X T A : set, topology_on X T(∀xA, ∃UT, x U U A)open_in X T A
Proof:
Proof not loaded.
Definition. We define a_elt to be Empty of type set.
Definition. We define b_elt to be {Empty} of type set.
Definition. We define c_elt to be {{Empty}} of type set.
Definition. We define abc_set to be UPair a_elt b_elt {c_elt} of type set.
Definition. We define top_abc_1 to be UPair Empty abc_set of type set.
Definition. We define top_abc_2 to be 𝒫 abc_set of type set.
Definition. We define top_abc_3 to be UPair Empty {a_elt} {abc_set} of type set.
Definition. We define top_abc_4 to be UPair Empty {b_elt} {abc_set} of type set.
Definition. We define top_abc_5 to be UPair Empty {c_elt} {abc_set} of type set.
Definition. We define top_abc_6 to be UPair Empty (UPair a_elt b_elt) {abc_set} of type set.
Definition. We define top_abc_7 to be UPair Empty (UPair a_elt c_elt) {abc_set} of type set.
Definition. We define top_abc_8 to be UPair Empty (UPair b_elt c_elt) {abc_set} of type set.
Definition. We define top_abc_9 to be (UPair Empty {a_elt} {UPair a_elt b_elt}) {abc_set} of type set.
Theorem. (topology_three_sets)
∀X A : set, A Xtopology_on X (UPair Empty A {X})
Proof:
Proof not loaded.
Theorem. (topology_chain_four_sets)
∀X A B : set, A BB Xtopology_on X ((UPair Empty A {B}) {X})
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Intersection_Fam to be λX Fam ⇒ {U𝒫 X|∀T : set, T FamU T} of type setsetset.
Theorem. (Intersection_Fam_empty_eq)
∀X Fam : set, ¬ (∃T : set, T Fam)Intersection_Fam X Fam = 𝒫 X
Proof:
Proof not loaded.
Theorem. (intersection_of_family_sub_X)
∀X Fam : set, intersection_of_family X Fam X
Proof:
Proof not loaded.
Theorem. (intersection_of_family_empty)
∀Fam : set, (∀T : set, T FamEmpty T)∀X : set, Empty Intersection_Fam X Fam
Proof:
Proof not loaded.
Definition. We define infinite_complement_family to be λX ⇒ {U𝒫 X|infinite (X U) U = Empty U = X} of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (infinite_setminus_finite)
∀X F : set, infinite Xfinite Finfinite (X F)
Proof:
Proof not loaded.
Theorem. (infinite_nonempty)
∀X : set, infinite X∃x : set, x X
Proof:
Proof not loaded.
Theorem. (finite_UPair)
∀a b : set, finite (UPair a b)
Proof:
Proof not loaded.
Theorem. (infinite_remove2)
∀X a b : set, infinite Xinfinite (X UPair a b)
Proof:
Proof not loaded.
Theorem. (infinite_two_distinct)
∀X : set, infinite X∃a b : set, a X b X ¬ (a = b)
Proof:
Proof not loaded.
Theorem. (infinite_setminus_finite_nonempty)
∀X F : set, infinite Xfinite F∃x : set, x X F
Proof:
Proof not loaded.
Theorem. (infinite_remove1_top)
∀X y : set, infinite Xinfinite (X {y})
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex13_4a_intersection_topology)
∀X Fam : set, (∃T : set, T Fam)(∀TFam, topology_on X T)topology_on X (Intersection_Fam X Fam)
Proof:
Proof not loaded.
Theorem. (ex13_4b_smallest_largest)
∀X Fam : set, (∀TFam, topology_on X T)∃Tmin, topology_on X Tmin (∀TFam, T Tmin) (∀T', topology_on X T' (∀TFam, T T')Tmin T') ∃Tmax, topology_on X Tmax (∀TFam, Tmax T) (∀T', topology_on X T' (∀TFam, T' T)T' Tmax)
Proof:
Proof not loaded.
Theorem. (ex13_4c_specific_topologies)
∃Tsmall Tall : set, topology_on abc_set Tsmall topology_on abc_set Tall
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define rational_numbers to be Q of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define open_interval to be λa b ⇒ {xR|Rlt a x Rlt x b} of type setsetset.
Theorem. (open_interval_left_in_R)
∀a b x : set, x open_interval a ba R
Proof:
Proof not loaded.
Theorem. (open_interval_right_in_R)
∀a b x : set, x open_interval a bb R
Proof:
Proof not loaded.
Definition. We define halfopen_interval_left to be λa b ⇒ {xR|¬ (Rlt x a) Rlt x b} of type setsetset.
Definition. We define halfopen_interval_right to be λa b ⇒ {xR|Rlt a x ¬ (Rlt b x)} of type setsetset.
Proof:
Proof not loaded.
Theorem. (halfopen_interval_right_rightmem)
∀a b : set, Rlt a bb halfopen_interval_right a b
Proof:
Proof not loaded.
Theorem. (open_interval_Subq_R)
∀a b : set, open_interval a b R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (halfopen_interval_left_leftmem)
∀a b : set, Rlt a ba halfopen_interval_left a b
Proof:
Proof not loaded.
Theorem. (halfopen_interval_left_leftmonotone)
∀a x b : set, a Rx Rb RRle a xhalfopen_interval_left x b halfopen_interval_left a b
Proof:
Proof not loaded.
Definition. We define R_standard_basis to be aR{open_interval a b|bR} of type set.
Definition. We define R_standard_topology to be generated_topology R R_standard_basis of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (R_standard_open_refine_interval)
∀U x : set, U R_standard_topologyx U∃a b : set, a R b R x open_interval a b open_interval a b U Rlt a x Rlt x b
Proof:
Proof not loaded.
Definition. We define R_lower_limit_basis to be aR{halfopen_interval_left a b|bR} of type set.
Definition. We define R_lower_limit_topology to be generated_topology R R_lower_limit_basis of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define R_upper_limit_basis to be aR{halfopen_interval_right a b|bR} of type set.
Proof:
Proof not loaded.
Definition. We define R_upper_limit_topology to be generated_topology R R_upper_limit_basis of type set.
Proof:
Proof not loaded.
Definition. We define inv_nat to be recip_SNo of type setset.
Theorem. (inv_nat_real)
∀n : set, n ωinv_nat n R
Proof:
Proof not loaded.
Definition. We define K_set to be {inv_nat n|nω {0}} of type set.
Proof:
Proof not loaded.
Theorem. (one_in_K_set)
Proof:
Proof not loaded.
Theorem. (not_in_K_set_implies_neq1)
∀x : set, ¬ (x K_set)x 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (K_set_Subq_R)
Proof:
Proof not loaded.
Theorem. (inv_nat_pos)
∀n : set, n ω {0}Rlt 0 (inv_nat n)
Proof:
Proof not loaded.
Definition. We define R_K_basis to be aR{open_interval a b K_set|bR} of type set.
Definition. We define R_K_topology to be generated_topology R (R_standard_basis R_K_basis) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (K_set_meets_lower_limit_neighborhood_0)
∀a b : set, a Rb R¬ (Rlt 0 a)Rlt 0 b∃y : set, y halfopen_interval_left a b y K_set
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define R_finite_complement_topology to be finite_complement_topology R of type set.
Definition. We define R_ray_topology to be {U𝒫 R|U = Empty U = R (∃aR, U = {xR|Rlt x a})} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (R_minus_singleton_eq_rays_union)
∀a : set, a RR {a,a} = {xR|Rlt x a} {xR|Rlt a x}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (setminus_binunion_eq_binintersect)
∀X A B : set, X (A B) = (X A) (X B)
Proof:
Proof not loaded.
Theorem. (setminus_binintersect_eq_binunion)
∀X A B : set, X (A B) = (X A) (X B)
Proof:
Proof not loaded.
Theorem. (setminus_setminus_eq)
∀X U : set, U XX (X U) = U
Proof:
Proof not loaded.
Theorem. (binintersect_closed)
∀X T C D : set, closed_in X T Cclosed_in X T Dclosed_in X T (C D)
Proof:
Proof not loaded.
Theorem. (binunion_closed)
∀X T C D : set, closed_in X T Cclosed_in X T Dclosed_in X T (C D)
Proof:
Proof not loaded.
Theorem. (Sing_eq_UPair)
∀x : set, {x} = {x,x}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define rational_open_intervals_basis to be q1rational_numbers{open_interval q1 q2|q2rational_numbers} of type set.
Proof:
Proof not loaded.
Theorem. (rational_dense_between_reals)
∀a b : set, a Rb RRlt a b∃qrational_numbers, Rlt a q Rlt q b
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define rational_halfopen_intervals_basis to be q1rational_numbers{halfopen_interval_left q1 q2|q2rational_numbers} of type set.
Proof:
Proof not loaded.
Definition. We define order_rel to be λX a b ⇒ (X = R Rlt a b) (X = rational_numbers Rlt a b) (X = ω a b) (X = ω {0} a b) (X = setprod 2 ω ∃i m j n : set, (i 2 m ω j 2 n ω a = (i,m) b = (j,n) (i j (i = j m n)))) (X = setprod R R ∃a1 a2 b1 b2 : set, a = (a1,a2) b = (b1,b2) (Rlt a1 b1 (a1 = b1 Rlt a2 b2))) (ordinal X X R X rational_numbers X setprod 2 ω X setprod R R a b) of type setsetsetprop.
Definition. We define simply_ordered_set to be λX ⇒ X = R X = rational_numbers X = ω X = ω {0} X = setprod 2 ω X = setprod R R ordinal X of type setprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_2_omega_00_1n)
∀n : set, n ωorder_rel (setprod 2 ω) (0,0) (1,n)
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_2_omega_0k_1n)
∀k n : set, k ωn ωorder_rel (setprod 2 ω) (0,k) (1,n)
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_2_omega_0k_0succk)
∀k : set, k ωorder_rel (setprod 2 ω) (0,k) (0,ordsucc k)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define tag_topology to be λy ⇒ SetAdjoin y {1} of type setset.
Notation. We use ' as a postfix operator with priority 100 corresponding to applying term tag_topology.
Theorem. (Sing1_not_SNo)
Proof:
Proof not loaded.
Theorem. (Inj1_0_eq_1)
Proof:
Proof not loaded.
Theorem. (tuple_0_1_eq_Sing1)
(0,1) = {1}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (R_neq_omega)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Rlt_implies_order_rel_R)
∀a b : set, Rlt a border_rel R a b
Proof:
Proof not loaded.
Theorem. (order_rel_R_implies_Rlt)
∀a b : set, order_rel R a bRlt a b
Proof:
Proof not loaded.
Theorem. (Rlt_implies_order_rel_Q)
∀a b : set, Rlt a border_rel rational_numbers a b
Proof:
Proof not loaded.
Theorem. (mem_implies_order_rel_omega)
∀a b : set, a border_rel ω a b
Proof:
Proof not loaded.
Theorem. (order_rel_omega_implies_mem)
∀a b : set, order_rel ω a ba b
Proof:
Proof not loaded.
Theorem. (order_rel_omega_nonzero_implies_mem)
∀a b : set, order_rel (ω {0}) a ba b
Proof:
Proof not loaded.
Theorem. (mem_implies_order_rel_omega_nonzero)
∀a b : set, a border_rel (ω {0}) a b
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_2_omega_intro)
∀i m j n : set, i 2m ωj 2n ω(i j (i = j m n))order_rel (setprod 2 ω) (i,m) (j,n)
Proof:
Proof not loaded.
Theorem. (order_rel_trichotomy_or_impred)
∀X a b : set, simply_ordered_set Xa Xb X∀p : prop, (order_rel X a bp)(a = bp)(order_rel X b ap)p
Proof:
Proof not loaded.
Theorem. (order_rel_trans)
∀X a b c : set, simply_ordered_set Xa Xb Xc Xorder_rel X a border_rel X b corder_rel X a c
Proof:
Proof not loaded.
Theorem. (order_rel_irref)
∀X x : set, ¬ (order_rel X x x)
Proof:
Proof not loaded.
Definition. We define order_topology_basis to be λX ⇒ (({I𝒫 X|∃aX, ∃bX, I = {xX|order_rel X a x order_rel X x b}} {I𝒫 X|∃bX, I = {xX|order_rel X x b}} {I𝒫 X|∃aX, I = {xX|order_rel X a x}}) {X}) of type setset.
Theorem. (order_topology_basis_cases)
∀X I : set, I order_topology_basis X(∃aX, ∃bX, I = {xX|order_rel X a x order_rel X x b}) (∃bX, I = {xX|order_rel X x b}) (∃aX, I = {xX|order_rel X a x}) I = X
Proof:
Proof not loaded.
Theorem. (order_topology_interval_refine)
∀X a1 b1x a2 b2x b1 b2 x : set, simply_ordered_set Xa1 Xb1x Xa2 Xb2x Xb1 = {x0X|order_rel X a1 x0 order_rel X x0 b1x}b2 = {x0X|order_rel X a2 x0 order_rel X x0 b2x}x b1x b2∃b3(order_topology_basis X), x b3 b3 b1 b2
Proof:
Proof not loaded.
Definition. We define is_least_element to be λX a0 ⇒ a0 X ∀x : set, x X¬ (order_rel X x a0) of type setsetprop.
Definition. We define is_largest_element to be λX b0 ⇒ b0 X ∀x : set, x X¬ (order_rel X b0 x) of type setsetprop.
Definition. We define order_topology_basis_tex to be λX ⇒ ({I𝒫 X|∃aX, ∃bX, order_rel X a b I = {xX|order_rel X a x order_rel X x b}} {I𝒫 X|∃a0 b : set, is_least_element X a0 b X order_rel X a0 b I = {xX|(x = a0 order_rel X a0 x) order_rel X x b}} {I𝒫 X|∃b0 a : set, is_largest_element X b0 a X order_rel X a b0 I = {xX|order_rel X a x (x = b0 order_rel X x b0)}}) of type setset.
Definition. We define order_topology to be λX ⇒ generated_topology X (order_topology_basis X) of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define open_ray_upper to be λX a ⇒ {xX|order_rel X a x} of type setsetset.
Definition. We define open_ray_lower to be λX a ⇒ {xX|order_rel X x a} of type setsetset.
Definition. We define open_rays_subbasis to be λX ⇒ (({I𝒫 X|∃aX, I = open_ray_upper X a} {I𝒫 X|∃bX, I = open_ray_lower X b}) {X}) of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define R2_dictionary_order_topology to be generated_topology_from_subbasis (setprod R R) (open_rays_subbasis (setprod R R)) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Zplus to be ω {0} of type set.
Proof:
Proof not loaded.
Theorem. (one_in_Zplus)
Proof:
Proof not loaded.
Theorem. (two_in_Zplus)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Zplus_neq_R)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_rel_Q_implies_Rlt)
∀a b : set, order_rel rational_numbers a bRlt a b
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_2_omega_unfold)
∀a b : set, order_rel (setprod 2 ω) a b∃i m j n : set, (i 2 m ω j 2 n ω a = (i,m) b = (j,n) (i j (i = j m n)))
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_R_R_unfold)
∀a b : set, order_rel (setprod R R) a b∃a1 a2 b1 b2 : set, a = (a1,a2) b = (b1,b2) (Rlt a1 b1 (a1 = b1 Rlt a2 b2))
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_R_R_intro)
∀a1 a2 b1 b2 : set, (Rlt a1 b1 (a1 = b1 Rlt a2 b2))order_rel (setprod R R) (a1,a2) (b1,b2)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_rel_Zplus_iff_mem)
∀a b : set, a Zplusb Zplus(order_rel Zplus a b a b)
Proof:
Proof not loaded.
Theorem. (Zplus_mem_omega)
∀n : set, n Zplusn ω
Proof:
Proof not loaded.
Theorem. (Zplus_mem_nonzero)
∀n : set, n Zplusn 0
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Zplus_ordsucc_closed)
∀n : set, n Zplusordsucc n Zplus
Proof:
Proof not loaded.
Theorem. (nat_nonzero_in_Zplus)
∀n : set, nat_p nn 0n Zplus
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (and_assoc)
∀A B C : prop, (A B) CA (B C)
Proof:
Proof not loaded.
Theorem. (and_assoc_rev)
∀A B C : prop, A (B C)(A B) C
Proof:
Proof not loaded.
Theorem. (and7E)
∀A B C D E F G : prop, A B C D E F G∀p : prop, (ABCDEFGp)p
Proof:
Proof not loaded.
Theorem. (and4E)
∀A B C D : prop, A B C D∀p : prop, (ABCDp)p
Proof:
Proof not loaded.
Theorem. (and5E)
∀A B C D E : prop, A B C D E∀p : prop, (ABCDEp)p
Proof:
Proof not loaded.
Theorem. (and6E)
∀A B C D E F : prop, A B C D E F∀p : prop, (ABCDEFp)p
Proof:
Proof not loaded.
Theorem. (mem_eqR)
∀x A B : set, A = Bx Ax B
Proof:
Proof not loaded.
Theorem. (mem_eqL)
∀x A B : set, A = Bx Bx A
Proof:
Proof not loaded.
Theorem. (conj7_last_disjE)
∀i m j n a b : set, i 2 m ω j 2 n ω a = (i,m) b = (j,n) (i j (i = j m n))(i j (i = j m n))
Proof:
Proof not loaded.
Definition. We define two_by_nat to be setprod 2 ω of type set.
Definition. We define two_by_nat_order_topology to be order_topology two_by_nat of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (pair_eq_fst)
∀a b c d : set, (a,b) = (c,d)a = c
Proof:
Proof not loaded.
Theorem. (pair_eq_snd)
∀a b c d : set, (a,b) = (c,d)b = d
Proof:
Proof not loaded.
Theorem. (no_point_between_setprod_2_omega_0k_0succk)
∀k y : set, k ωy setprod 2 ωorder_rel (setprod 2 ω) (0,k) yorder_rel (setprod 2 ω) y (0,ordsucc k)False
Proof:
Proof not loaded.
Theorem. (no_point_between_setprod_2_omega_1n_1succn)
∀n y : set, n ωy setprod 2 ωorder_rel (setprod 2 ω) (1,n) yorder_rel (setprod 2 ω) y (1,ordsucc n)False
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define rectangle_set to be λU V ⇒ setprod U V of type setsetset.
Theorem. (rectangle_set_def)
∀U V : set, rectangle_set U V = setprod U V
Proof:
Proof not loaded.
Theorem. (tuple_2_rectangle_set)
∀U V : set, ∀x y : set, x Uy V(x,y) rectangle_set U V
Proof:
Proof not loaded.
Theorem. (setprod_eta)
∀X Y p : set, p setprod X Yp = (p 0,p 1)
Proof:
Proof not loaded.
Theorem. (setprod_Subq)
∀U V X Y : set, U XV Ysetprod U V setprod X Y
Proof:
Proof not loaded.
Theorem. (setprod_elem_decompose)
∀X Y p : set, p setprod X Y∃xX, ∃yY, p setprod {x} {y}
Proof:
Proof not loaded.
Theorem. (singleton_subset)
∀x U : set, x U{x} U
Proof:
Proof not loaded.
Theorem. (singleton_elem)
∀x y : set, x {y}x = y
Proof:
Proof not loaded.
Theorem. (setprod_coords_in)
∀x y U V p : set, p setprod {x} {y}p setprod U Vx U y V
Proof:
Proof not loaded.
Theorem. (setprod_intersection)
∀U1 V1 U2 V2 : set, setprod U1 V1 setprod U2 V2 = setprod (U1 U2) (V1 V2)
Proof:
Proof not loaded.
Definition. We define product_subbasis to be λX Tx Y Ty ⇒ UTx{rectangle_set U V|VTy} of type setsetsetsetset.
Definition. We define product_topology to be λX Tx Y Ty ⇒ generated_topology (setprod X Y) (product_subbasis X Tx Y Ty) of type setsetsetsetset.
Theorem. (product_subbasis_is_basis)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tybasis_on (setprod X Y) (product_subbasis X Tx Y Ty)
Proof:
Proof not loaded.
Theorem. (product_topology_is_topology)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tytopology_on (setprod X Y) (product_topology X Tx Y Ty)
Proof:
Proof not loaded.
Definition. We define product_basis_from to be λBx By ⇒ UBx{setprod U V|VBy} of type setsetset.
Theorem. (product_basis_generates_product_topology)
∀X Y Bx By Tx Ty : set, basis_on X Bxgenerated_topology X Bx = Txbasis_on Y Bygenerated_topology Y By = Tygenerated_topology (setprod X Y) (product_basis_from Bx By) = product_topology X Tx Y Ty
Proof:
Proof not loaded.
Theorem. (product_basis_from_is_basis_on)
∀X Y Bx By Tx Ty : set, basis_on X Bxgenerated_topology X Bx = Txbasis_on Y Bygenerated_topology Y By = Tybasis_on (setprod X Y) (product_basis_from Bx By)
Proof:
Proof not loaded.
Theorem. (product_basis_generates)
∀X Tx Y Ty Bx By : set, basis_on X Bx generated_topology X Bx = Txbasis_on Y By generated_topology Y By = Ty∃B : set, basis_on (setprod X Y) B (∀UBx, ∀VBy, setprod U V B) generated_topology (setprod X Y) B = product_topology X Tx Y Ty
Proof:
Proof not loaded.
Definition. We define projection1 to be λX Y ⇒ {(p,p 0)|psetprod X Y} of type setsetset.
Definition. We define projection2 to be λX Y ⇒ {(p,p 1)|psetprod X Y} of type setsetset.
Theorem. (product_subbasis_from_projections)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Ty∃S : set, S = product_subbasis X Tx Y Ty generated_topology (setprod X Y) S = product_topology X Tx Y Ty
Proof:
Proof not loaded.
Definition. We define apply_fun to be λf x ⇒ Eps_i (λy ⇒ (x,y) f) of type setsetset.
Definition. We define function_on to be λf X Y ⇒ ∀x : set, x Xapply_fun f x Y of type setsetsetprop.
Definition. We define function_space to be λX Y ⇒ {f𝒫 (setprod X Y)|function_on f X Y} of type setsetset.
Theorem. (function_on_restrict_dom)
∀f X X' Y : set, function_on f X YX' Xfunction_on f X' Y
Proof:
Proof not loaded.
Theorem. (function_on_of_function_space)
∀f X Y : set, f function_space X Yfunction_on f X Y
Proof:
Proof not loaded.
Definition. We define functional_graph to be λf ⇒ ∀x y1 y2 : set, (x,y1) f(x,y2) fy1 = y2 of type setprop.
Definition. We define graph_domain_subset to be λf X ⇒ ∀x y : set, (x,y) fx X of type setsetprop.
Definition. We define graph_range_subset to be λf Y ⇒ ∀x y : set, (x,y) fy Y of type setsetprop.
Theorem. (graph_domain_subset_of_sub_setprod)
∀f X Y : set, f setprod X Ygraph_domain_subset f X
Proof:
Proof not loaded.
Theorem. (graph_range_subset_of_sub_setprod)
∀f X Y : set, f setprod X Ygraph_range_subset f Y
Proof:
Proof not loaded.
Theorem. (graph_domain_subset_graph)
∀A : set, ∀g : setset, graph_domain_subset {(a,g a)|aA} A
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (graph_range_subset_graph)
∀A Y : set, ∀g : setset, (∀a : set, a Ag a Y)graph_range_subset {(a,g a)|aA} Y
Proof:
Proof not loaded.
Theorem. (graph_range_subset_const_fun)
∀A Y c : set, c Ygraph_range_subset {(a,c)|aA} Y
Proof:
Proof not loaded.
Theorem. (functional_graph_graph)
∀A : set, ∀g : setset, functional_graph {(a,g a)|aA}
Proof:
Proof not loaded.
Theorem. (functional_graph_const_fun)
∀A c : set, functional_graph {(a,c)|aA}
Proof:
Proof not loaded.
Theorem. (apply_fun_in_graph_of_ex)
∀f x : set, (∃y : set, (x,y) f)(x,apply_fun f x) f
Proof:
Proof not loaded.
Theorem. (functional_graph_apply_fun_eq)
∀f x y : set, functional_graph f(x,y) fapply_fun f x = y
Proof:
Proof not loaded.
Theorem. (graph_domain_subset_binunion)
∀A B f g : set, graph_domain_subset f Agraph_domain_subset g Bgraph_domain_subset (f g) (A B)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (function_on_from_totality_and_range)
∀X Y f : set, (∀x : set, x X∃y : set, y Y (x,y) f)graph_range_subset f Yfunction_on f X Y
Proof:
Proof not loaded.
Definition. We define graph to be λA g ⇒ {(a,g a)|aA} of type set(setset)set.
Theorem. (apply_fun_graph)
∀A : set, ∀g : setset, ∀a : set, a Aapply_fun (graph A g) a = g a
Proof:
Proof not loaded.
Definition. We define total_function_on to be λf X Y ⇒ function_on f X Y ∀x : set, x X∃y : set, y Y (x,y) f of type setsetsetprop.
Theorem. (total_function_on_function_on)
∀f X Y : set, total_function_on f X Yfunction_on f X Y
Proof:
Proof not loaded.
Theorem. (total_function_on_totality)
∀f X Y : set, total_function_on f X Y∀x : set, x X∃y : set, y Y (x,y) f
Proof:
Proof not loaded.
Theorem. (total_functional_graph_eq_graph_of_apply_fun)
∀f X Y : set, total_function_on f X Yfunctional_graph ff setprod X Yf = graph X (λx : setapply_fun f x)
Proof:
Proof not loaded.
Theorem. (total_function_on_domain_iff_exists_pair)
∀f X Y x : set, total_function_on f X Ygraph_domain_subset f X(x X ∃y : set, (x,y) f)
Proof:
Proof not loaded.
Theorem. (total_function_on_domain_unique)
∀f X X' Y : set, total_function_on f X Ygraph_domain_subset f Xtotal_function_on f X' Ygraph_domain_subset f X'X = X'
Proof:
Proof not loaded.
Theorem. (total_function_on_apply_fun_in_graph)
∀f X Y x : set, total_function_on f X Yx X(x,apply_fun f x) f
Proof:
Proof not loaded.
Theorem. (total_function_on_apply_fun_in_Y)
∀f X Y x : set, total_function_on f X Yx Xapply_fun f x Y
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define const_fun to be λA x ⇒ {(a,x)|aA} of type setsetset.
Theorem. (const_fun_apply)
∀A x a : set, a Aapply_fun (const_fun A x) a = x
Proof:
Proof not loaded.
Theorem. (const_fun_total_function_on)
∀A Y x : set, x Ytotal_function_on (const_fun A x) A Y
Proof:
Proof not loaded.
Theorem. (identity_function_apply)
∀X x : set, x Xapply_fun {(y,y)|yX} x = x
Proof:
Proof not loaded.
Theorem. (identity_total_function_on)
∀X : set, total_function_on {(y,y)|yX} X X
Proof:
Proof not loaded.
Definition. We define const_family to be λI X ⇒ {(i,X)|iI} of type setsetset.
Theorem. (const_family_apply)
∀I X i : set, i Iapply_fun (const_family I X) i = X
Proof:
Proof not loaded.
Definition. We define product_component to be λXi i ⇒ (apply_fun Xi i) 0 of type setsetset.
Definition. We define product_component_topology to be λXi i ⇒ (apply_fun Xi i) 1 of type setsetset.
Theorem. (product_component_def)
∀Xi i : set, product_component Xi i = (apply_fun Xi i) 0
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define const_space_family to be λI X Tx ⇒ {(i,(X,Tx))|iI} of type setsetsetset.
Theorem. (const_space_family_apply)
∀I X Tx i : set, i Iapply_fun (const_space_family I X Tx) i = (X,Tx)
Proof:
Proof not loaded.
Definition. We define space_family_set to be λXi i ⇒ (apply_fun Xi i) 0 of type setsetset.
Definition. We define space_family_topology to be λXi i ⇒ (apply_fun Xi i) 1 of type setsetset.
Theorem. (space_family_set_def)
∀Xi i : set, space_family_set Xi i = (apply_fun Xi i) 0
Proof:
Proof not loaded.
Theorem. (space_family_topology_def)
∀Xi i : set, space_family_topology Xi i = (apply_fun Xi i) 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (space_family_set_const_space_family)
∀I X Tx i : set, i Ispace_family_set (const_space_family I X Tx) i = X
Proof:
Proof not loaded.
Theorem. (space_family_topology_const_space_family)
∀I X Tx i : set, i Ispace_family_topology (const_space_family I X Tx) i = Tx
Proof:
Proof not loaded.
Definition. We define space_family_union to be λI Xi ⇒ {space_family_set Xi i|iI} of type setsetset.
Definition. We define topology_family_union to be λI Xi ⇒ {space_family_topology Xi i|iI} of type setsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define product_space to be λI Xi ⇒ {f𝒫 (setprod I (space_family_union I Xi))|total_function_on f I (space_family_union I Xi) functional_graph f ∀i : set, i Iapply_fun f i space_family_set Xi i} of type setsetset.
Theorem. (product_space_graphI)
∀I Xi : set, ∀g : setset, (∀i : set, i Ig i space_family_set Xi i)graph I g product_space I Xi
Proof:
Proof not loaded.
Definition. We define product_cylinder to be λI Xi i U ⇒ {fproduct_space I Xi|i I U space_family_topology Xi i apply_fun f i U} of type setsetsetsetset.
Definition. We define product_subbasis_full to be λI Xi ⇒ iI{product_cylinder I Xi i U|Uspace_family_topology Xi i} of type setsetset.
Definition. We define product_topology_full to be λI Xi ⇒ generated_topology_from_subbasis (product_space I Xi) (product_subbasis_full I Xi) of type setsetset.
Definition. We define box_basis to be λI Xi ⇒ {B𝒫 (product_space I Xi)|∃U : set, total_function_on U I (topology_family_union I Xi) functional_graph U (∀i : set, i Iapply_fun U i space_family_topology Xi i) B = {fproduct_space I Xi|∀i : set, i Iapply_fun f i apply_fun U i}} of type setsetset.
Definition. We define box_topology to be λI Xi ⇒ generated_topology (product_space I Xi) (box_basis I Xi) of type setsetset.
Definition. We define countable_product_space to be λI Xi ⇒ product_space I Xi of type setsetset.
Definition. We define countable_product_topology to be λI Xi ⇒ product_topology_full I Xi of type setsetset.
Definition. We define euclidean_space to be λn ⇒ product_space n (const_space_family n R R_standard_topology) of type setset.
Definition. We define euclidean_topology to be λn ⇒ product_topology_full n (const_space_family n R R_standard_topology) of type setset.
Definition. We define R2_standard_topology to be product_topology R R_standard_topology R R_standard_topology of type set.
Proof:
Proof not loaded.
Theorem. (open_rectangle_set_eq_rectangle_set_intervals)
∀a b c d : set, {pEuclidPlane|∃x y : set, p = (x,y) Rlt a x Rlt x b Rlt c y Rlt y d} = rectangle_set (open_interval a b) (open_interval c d)
Proof:
Proof not loaded.
Theorem. (open_rectangle_in_R2_standard_topology)
∀a b c d : set, Rlt a bRlt c d{pEuclidPlane|∃x y : set, p = (x,y) Rlt a x Rlt x b Rlt c y Rlt y d} R2_standard_topology
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define subspace_topology to be λX Tx Y ⇒ {U𝒫 Y|∃VTx, U = V Y} of type setsetsetset.
Theorem. (subspace_topologyE)
∀X Tx Y U : set, U subspace_topology X Tx Y∃VTx, U = V Y
Proof:
Proof not loaded.
Theorem. (subspace_topologyI)
∀X Tx Y V : set, V Tx(V Y) subspace_topology X Tx Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_subset)
∀X Tx Y U : set, U subspace_topology X Tx YU Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_in_Power)
∀X Tx Y U : set, U subspace_topology X Tx YU 𝒫 Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_binintersect_witness)
∀X Tx Y U V VU VV : set, U = VU YV = VV YU V = (VU VV) Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_binintersect)
∀X Tx Y U V : set, topology_on X TxY XU subspace_topology X Tx YV subspace_topology X Tx YU V subspace_topology X Tx Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_mono)
∀X Tx1 Tx2 Y U : set, Tx1 Tx2U subspace_topology X Tx1 YU subspace_topology X Tx2 Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_union_closed)
∀X Tx Y UFam : set, topology_on X TxY XUFam subspace_topology X Tx Y UFam subspace_topology X Tx Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_whole)
∀X Tx : set, topology_on X Txsubspace_topology X Tx X = Tx
Proof:
Proof not loaded.
Theorem. (subspace_topology_is_topology)
∀X Tx Y : set, topology_on X TxY Xtopology_on Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Theorem. (open_in_subspace_iff)
∀X Tx Y U : set, topology_on X TxY XU Y(open_in Y (subspace_topology X Tx Y) U ∃VTx, U = V Y)
Proof:
Proof not loaded.
Theorem. (subspace_basis)
∀X Tx Y B : set, topology_on X TxY Xbasis_on X B generated_topology X B = Txbasis_on Y {b Y|bB} generated_topology Y {b Y|bB} = subspace_topology X Tx Y
Proof:
Proof not loaded.
Theorem. (open_in_subspace_if_ambient_open)
∀X Tx Y U : set, topology_on X TxY TxU Yopen_in Y (subspace_topology X Tx Y) UU Tx
Proof:
Proof not loaded.
Theorem. (product_subspace_topology)
∀X Tx Y Ty A B : set, topology_on X Txtopology_on Y TyA XB Yproduct_topology A (subspace_topology X Tx A) B (subspace_topology Y Ty B) = subspace_topology (setprod X Y) (product_topology X Tx Y Ty) (setprod A B)
Proof:
Proof not loaded.
Definition. We define unit_interval to be {xR|¬ (Rlt x 0) ¬ (Rlt 1 x)} of type set.
Proof:
Proof not loaded.
Theorem. (eps_1_in_R)
Proof:
Proof not loaded.
Theorem. (eps_1_pos_R)
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_R_R_x0_xeps1)
∀x : set, x Rorder_rel (setprod R R) (x,0) (x,eps_ 1)
Proof:
Proof not loaded.
Theorem. (eps_1_lt1_R)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (unit_interval_Rle0)
∀t : set, t unit_intervalRle 0 t
Proof:
Proof not loaded.
Theorem. (unit_interval_Rle1)
∀t : set, t unit_intervalRle t 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (two_in_R)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define unit_interval_topology to be subspace_topology R R_standard_topology unit_interval of type set.
Proof:
Proof not loaded.
Definition. We define flip_unit_interval to be {(t,add_SNo 1 (minus_SNo t))|tunit_interval} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define ordered_square to be setprod unit_interval unit_interval of type set.
Definition. We define ordered_square_order_basis to be ({I𝒫 ordered_square|∃aordered_square, ∃bordered_square, I = {xordered_square|order_rel (setprod R R) a x order_rel (setprod R R) x b}} {I𝒫 ordered_square|∃bordered_square, I = {xordered_square|order_rel (setprod R R) x b}} {I𝒫 ordered_square|∃aordered_square, I = {xordered_square|order_rel (setprod R R) a x}}) of type set.
Definition. We define ordered_square_topology to be generated_topology ordered_square ordered_square_order_basis of type set.
Definition. We define ordered_square_open_strip to be {pordered_square|∃y : set, p = (eps_ 1,y) Rlt (eps_ 1) y ¬ (Rlt 1 y)} of type set.
Definition. We define ordered_square_subspace_topology to be subspace_topology (setprod R R) R2_dictionary_order_topology ordered_square of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define order_interval to be λX a b ⇒ {xX|order_rel X a x order_rel X x b} of type setsetsetset.
Proof:
Proof not loaded.
Theorem. (order_interval_subset)
∀X a b : set, order_interval X a b X
Proof:
Proof not loaded.
Theorem. (order_intervalE)
∀X a b x : set, x order_interval X a bx X (order_rel X a x order_rel X x b)
Proof:
Proof not loaded.
Theorem. (order_intervalI)
∀X a b x : set, x Xorder_rel X a xorder_rel X x bx order_interval X a b
Proof:
Proof not loaded.
Definition. We define convex_in to be λX Y ⇒ Y X ∀a b : set, a Yb Yorder_interval X a b Y of type setsetprop.
Theorem. (convex_in_subset)
∀X Y : set, convex_in X YY X
Proof:
Proof not loaded.
Theorem. (convex_in_interval_property)
∀X Y : set, convex_in X Y∀a b : set, a Yb Yorder_interval X a b Y
Proof:
Proof not loaded.
Definition. We define order_topology_basis_inherited to be λX Y ⇒ (({I𝒫 Y|∃aY, ∃bY, I = {xY|order_rel X a x order_rel X x b}} {I𝒫 Y|∃bY, I = {xY|order_rel X x b}} {I𝒫 Y|∃aY, I = {xY|order_rel X a x}}) {Y}) of type setsetset.
Definition. We define order_topology_inherited to be λX Y ⇒ generated_topology Y (order_topology_basis_inherited X Y) of type setsetset.
Proof:
Proof not loaded.
Theorem. (binintersect_right_absorb_subset)
∀W Y A : set, A Y(W Y) A = W A
Proof:
Proof not loaded.
Theorem. (ex16_1_subspace_transitive)
∀X Tx Y A : set, topology_on X TxY XA Ysubspace_topology Y (subspace_topology X Tx Y) A = subspace_topology X Tx A
Proof:
Proof not loaded.
Theorem. (ex16_2_finer_subspaces)
∀X T T' Y : set, topology_on X Ttopology_on X T'T' TY Xsubspace_topology X T' Y subspace_topology X T Y
Proof:
Proof not loaded.
Theorem. (subspace_topology_eq_of_eq)
∀X T T' Y : set, T = T'subspace_topology X T Y = subspace_topology X T' Y
Proof:
Proof not loaded.
Definition. We define one_half to be inv_nat 2 of type set.
Definition. We define interval_A to be {xR|one_half < abs_SNo x abs_SNo x < 1} of type set.
Definition. We define interval_B to be {xR|one_half < abs_SNo x ¬ (1 < abs_SNo x)} of type set.
Definition. We define interval_C to be {xR|¬ (abs_SNo x < one_half) abs_SNo x < 1} of type set.
Definition. We define interval_D to be {xR|¬ (abs_SNo x < one_half) ¬ (1 < abs_SNo x)} of type set.
Definition. We define interval_E to be {xR|0 < abs_SNo x abs_SNo x < 1 ¬ (div_SNo 1 x Zplus)} of type set.
Theorem. (ex16_3_open_sets_subspace)
∀X Tx Y : set, topology_on X TxY X∀U : set, open_in Y (subspace_topology X Tx Y) U∃V : set, open_in X Tx V U = V Y
Proof:
Proof not loaded.
Definition. We define projection_image1 to be λX Y U ⇒ {xX|∃y : set, (x,y) U} of type setsetsetset.
Definition. We define projection_image2 to be λX Y U ⇒ {yY|∃x : set, (x,y) U} of type setsetsetset.
Theorem. (nonempty_has_element)
∀V : set, V Empty∃y : set, y V
Proof:
Proof not loaded.
Theorem. (elem_implies_nonempty)
∀V y : set, y VV Empty
Proof:
Proof not loaded.
Theorem. (projection_image1_rectangle_nonempty)
∀X Y U V : set, U XV YV Emptyprojection_image1 X Y (setprod U V) = U
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (projection_image2_rectangle_nonempty)
∀X Y U V : set, U XV YU Emptyprojection_image2 X Y (setprod U V) = V
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex16_4_projections_open)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Ty∀U : set, U product_topology X Tx Y Tyopen_in X Tx (projection_image1 X Y U) open_in Y Ty (projection_image2 X Y U)
Proof:
Proof not loaded.
Theorem. (ex16_5a_product_monotone)
∀X T T' Y U U' : set, X EmptyY Emptytopology_on X Ttopology_on X T'topology_on Y Utopology_on Y U'T T' U U'product_topology X T Y U product_topology X T' Y U'
Proof:
Proof not loaded.
Theorem. (ex16_5b_product_converse)
∀X T T' Y U U' : set, X EmptyY Emptytopology_on X Ttopology_on X T'topology_on Y Utopology_on Y U'product_topology X T Y U product_topology X T' Y U'T T' U U'
Proof:
Proof not loaded.
Definition. We define rational_rectangle_basis to be {r𝒫 (setprod R R)|∃a b c d : set, a rational_numbers b rational_numbers c rational_numbers d rational_numbers r = setprod (open_interval a b) (open_interval c d)} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define closed_interval_in to be λX a b ⇒ {xX|(x = a order_rel X a x) (x = b order_rel X x b)} of type setsetsetset.
Definition. We define halfopen_interval_left_in to be λX a b ⇒ {xX|(x = a order_rel X a x) order_rel X x b} of type setsetsetset.
Definition. We define halfopen_interval_right_in to be λX a b ⇒ {xX|order_rel X a x (x = b order_rel X x b)} of type setsetsetset.
Definition. We define closed_ray_upper to be λX a ⇒ {xX|x = a order_rel X a x} of type setsetset.
Definition. We define closed_ray_lower to be λX a ⇒ {xX|x = a order_rel X x a} of type setsetset.
Proof:
Proof not loaded.
Definition. We define interval_in to be λX a b Y ⇒ Y = order_interval X a b Y = halfopen_interval_left_in X a b Y = halfopen_interval_right_in X a b Y = closed_interval_in X a b of type setsetsetsetprop.
Definition. We define ray_in to be λX a Y ⇒ Y = open_ray_upper X a Y = closed_ray_upper X a Y = open_ray_lower X a Y = closed_ray_lower X a of type setsetsetprop.
Definition. We define interval_or_ray_in to be λX Y ⇒ (∃a b : set, a X b X interval_in X a b Y) (∃a : set, a X ray_in X a Y) of type setsetprop.
Definition. We define Q_sqrt2_cut to be {qrational_numbers|mul_SNo q q < 2} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Q_sqrt2_cut_between_square)
∀a b x : set, a Q_sqrt2_cutb Q_sqrt2_cutx rational_numbersRlt a xRlt x bmul_SNo x x < 2
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Q_sqrt2_cut_no_max)
∀q : set, q Q_sqrt2_cut∃r : set, r Q_sqrt2_cut Rlt q r
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Q_sqrt2_cut_no_min)
∀q : set, q Q_sqrt2_cut∃r : set, r Q_sqrt2_cut Rlt r q
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define interior_of to be λX T A ⇒ {xX|∃U : set, U T x U U A} of type setsetsetset.
Definition. We define closure_of to be λX T A ⇒ {xX|∀U : set, U Tx UU A Empty} of type setsetsetset.
Theorem. (interior_of_contains_open_subset_point)
∀X Tx A U x : set, topology_on X TxU Txx UU Ax interior_of X Tx A
Proof:
Proof not loaded.
Theorem. (point_in_open_empty_interior_not_subset)
∀X Tx A U x : set, topology_on X Txinterior_of X Tx A = EmptyU Txx U¬ (U A)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (subset_of_closure)
∀X Tx A : set, topology_on X TxA XA closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (closure_monotone)
∀X Tx A B : set, topology_on X TxA BB Xclosure_of X Tx A closure_of X Tx B
Proof:
Proof not loaded.
Theorem. (closure_finer_than_Subq)
∀X T1 T2 A : set, finer_than T1 T2closure_of X T1 A closure_of X T2 A
Proof:
Proof not loaded.
Theorem. (interior_subset)
∀X Tx A : set, topology_on X Txinterior_of X Tx A A
Proof:
Proof not loaded.
Theorem. (interior_monotone)
∀X Tx A B : set, topology_on X TxA Binterior_of X Tx A interior_of X Tx B
Proof:
Proof not loaded.
Theorem. (open_interior_eq)
∀X Tx U : set, topology_on X TxU Txinterior_of X Tx U = U
Proof:
Proof not loaded.
Theorem. (open_subset_interior)
∀X Tx U A : set, topology_on X TxU TxU AU interior_of X Tx A
Proof:
Proof not loaded.
Theorem. (open_subset_empty_interior_implies_empty)
∀X Tx U A : set, topology_on X TxU TxU Ainterior_of X Tx A = EmptyU = Empty
Proof:
Proof not loaded.
Theorem. (interior_of_empty)
∀X Tx : set, topology_on X Txinterior_of X Tx Empty = Empty
Proof:
Proof not loaded.
Theorem. (interior_of_space)
∀X Tx : set, topology_on X Txinterior_of X Tx X = X
Proof:
Proof not loaded.
Theorem. (interior_is_open)
∀X Tx A : set, topology_on X TxA Xinterior_of X Tx A Tx
Proof:
Proof not loaded.
Theorem. (interior_union_contains_union_interiors)
∀X Tx A B : set, topology_on X TxA XB Xinterior_of X Tx A interior_of X Tx B interior_of X Tx (A B)
Proof:
Proof not loaded.
Theorem. (interior_intersection_contains_intersection)
∀X Tx A B : set, topology_on X TxA XB Xinterior_of X Tx (A B) interior_of X Tx A interior_of X Tx B
Proof:
Proof not loaded.
Theorem. (interior_intersection_of_opens)
∀X Tx U V : set, topology_on X TxU TxV Txinterior_of X Tx (U V) = U V
Proof:
Proof not loaded.
Theorem. (interior_idempotent)
∀X Tx A : set, topology_on X TxA Xinterior_of X Tx (interior_of X Tx A) = interior_of X Tx A
Proof:
Proof not loaded.
Theorem. (not_in_closure_has_disjoint_open)
∀X Tx A x : set, topology_on X TxA Xx Xx closure_of X Tx A∃U : set, U Tx x U U A = Empty
Proof:
Proof not loaded.
Theorem. (closure_is_closed)
∀X Tx A : set, topology_on X TxA Xclosed_in X Tx (closure_of X Tx A)
Proof:
Proof not loaded.
Theorem. (interior_closure_complement_duality)
∀X Tx A : set, topology_on X TxA Xinterior_of X Tx A = X closure_of X Tx (X A)
Proof:
Proof not loaded.
Theorem. (closure_contains_set)
∀X Tx A : set, topology_on X TxA XA closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (closure_in_space)
∀X Tx A : set, topology_on X Txclosure_of X Tx A X
Proof:
Proof not loaded.
Theorem. (closure_subset_of_closed_superset)
∀X Tx A C : set, topology_on X TxA Cclosed_in X Tx Cclosure_of X Tx A C
Proof:
Proof not loaded.
Theorem. (closure_union_contains_union_closures)
∀X Tx A B : set, topology_on X TxA XB Xclosure_of X Tx A closure_of X Tx B closure_of X Tx (A B)
Proof:
Proof not loaded.
Theorem. (closure_of_empty)
∀X Tx : set, topology_on X Txclosure_of X Tx Empty = Empty
Proof:
Proof not loaded.
Theorem. (closure_of_space)
∀X Tx : set, topology_on X Txclosure_of X Tx X = X
Proof:
Proof not loaded.
Theorem. (union_of_closed_is_closed)
∀X Tx C D : set, topology_on X Txclosed_in X Tx Cclosed_in X Tx Dclosed_in X Tx (C D)
Proof:
Proof not loaded.
Theorem. (empty_is_closed)
∀X Tx : set, topology_on X Txclosed_in X Tx Empty
Proof:
Proof not loaded.
Theorem. (space_is_closed)
∀X Tx : set, topology_on X Txclosed_in X Tx X
Proof:
Proof not loaded.
Theorem. (binunion_eq_Union_UPair)
∀U V : set, U V = (UPair U V)
Proof:
Proof not loaded.
Theorem. (Union_UPair_eq_binunion)
∀U V : set, (UPair U V) = U V
Proof:
Proof not loaded.
Theorem. (lemma_union_two_open)
∀X T U V : set, topology_on X TU TV TU V T
Proof:
Proof not loaded.
Theorem. (intersection_of_closed_is_closed)
∀X Tx C D : set, topology_on X Txclosed_in X Tx Cclosed_in X Tx Dclosed_in X Tx (C D)
Proof:
Proof not loaded.
Theorem. (closed_closure_eq)
∀X Tx C : set, topology_on X Txclosed_in X Tx Cclosure_of X Tx C = C
Proof:
Proof not loaded.
Theorem. (closure_intersection_of_closed)
∀X Tx C D : set, topology_on X Txclosed_in X Tx Cclosed_in X Tx Dclosure_of X Tx (C D) = C D
Proof:
Proof not loaded.
Theorem. (closure_union_of_closed)
∀X Tx C D : set, topology_on X Txclosed_in X Tx Cclosed_in X Tx Dclosure_of X Tx (C D) = C D
Proof:
Proof not loaded.
Theorem. (closure_idempotent)
∀X Tx A : set, topology_on X TxA Xclosure_of X Tx (closure_of X Tx A) = closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (closure_intersection_contained)
∀X Tx A B : set, topology_on X TxA XB Xclosure_of X Tx (A B) closure_of X Tx A closure_of X Tx B
Proof:
Proof not loaded.
Theorem. (closed_sets_axioms)
∀X T : set, topology_on X Tlet C ≔ {X U|UT} in X C Empty C (∀F : set, F 𝒫 Cintersection_of_family X F C) (∀A B : set, A CB CA B C)
Proof:
Proof not loaded.
Theorem. (closed_in_subspace_iff_intersection)
∀X Tx Y A : set, topology_on X TxY X(closed_in Y (subspace_topology X Tx Y) A ∃C : set, closed_in X Tx C A = C Y)
Proof:
Proof not loaded.
Theorem. (closed_in_closed_subspace)
∀X Tx Y A : set, topology_on X Txclosed_in X Tx Yclosed_in Y (subspace_topology X Tx Y) Aclosed_in X Tx A
Proof:
Proof not loaded.
Theorem. (closure_in_subspace)
∀X Tx Y A : set, topology_on X TxY XA Yclosure_of Y (subspace_topology X Tx Y) A = (closure_of X Tx A) Y
Proof:
Proof not loaded.
Theorem. (closure_characterization)
∀X Tx A x : set, topology_on X Txx X(x closure_of X Tx A (∀UTx, x UU A Empty))
Proof:
Proof not loaded.
Definition. We define limit_point_of to be λX Tx A x ⇒ topology_on X Tx x X ∀U : set, U Txx U∃y : set, y A y x y U of type setsetsetsetprop.
Definition. We define limit_points_of to be λX Tx A ⇒ {xX|limit_point_of X Tx A x} of type setsetsetset.
Theorem. (closure_equals_set_plus_limit_points)
∀X Tx A : set, topology_on X TxA Xclosure_of X Tx A = A limit_points_of X Tx A
Proof:
Proof not loaded.
Theorem. (closed_iff_contains_limit_points)
∀X Tx A : set, topology_on X TxA X(closed_in X Tx A limit_points_of X Tx A A)
Proof:
Proof not loaded.
Definition. We define Hausdorff_space to be λX Tx ⇒ topology_on X Tx ∀x1 x2 : set, x1 Xx2 Xx1 x2∃U V : set, U Tx V Tx x1 U x2 V U V = Empty of type setsetprop.
Theorem. (Hausdorff_space_topology)
∀X Tx : set, Hausdorff_space X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (Hausdorff_space_separation)
∀X Tx x1 x2 : set, Hausdorff_space X Txx1 Xx2 Xx1 x2∃U V : set, U Tx V Tx x1 U x2 V U V = Empty
Proof:
Proof not loaded.
Definition. We define T1_space to be λX Tx ⇒ topology_on X Tx (∀F : set, F Xfinite Fclosed_in X Tx F) of type setsetprop.
Theorem. (T1_space_topology)
∀X Tx : set, T1_space X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (T1_space_finite_closed)
∀X Tx F : set, T1_space X TxF Xfinite Fclosed_in X Tx F
Proof:
Proof not loaded.
Theorem. (Hausdorff_singleton_complement_open)
∀X Tx x : set, Hausdorff_space X Txx XX {x} Tx
Proof:
Proof not loaded.
Theorem. (Hausdorff_singletons_closed)
∀X Tx x : set, Hausdorff_space X Txx Xclosed_in X Tx {x}
Proof:
Proof not loaded.
Theorem. (finite_sets_closed_in_Hausdorff)
∀X Tx : set, Hausdorff_space X Tx∀F : set, F Xfinite Fclosed_in X Tx F
Proof:
Proof not loaded.
Theorem. (limit_points_infinite_neighborhoods)
∀X Tx A x : set, T1_space X Txx X(limit_point_of X Tx A x (∀UTx, x Uinfinite (U A)))
Proof:
Proof not loaded.
Theorem. (Hausdorff_unique_limits)
∀X Tx seq x y : set, Hausdorff_space X Txx Xy Xx yfunction_on seq ω X(∀U : set, U Txx U∃N : set, N ω ∀n : set, n ωN napply_fun seq n U)(∀U : set, U Txy U∃N : set, N ω ∀n : set, n ωN napply_fun seq n U)False
Proof:
Proof not loaded.
Theorem. (Hausdorff_stability)
∀X Tx Y Ty : set, Hausdorff_space X Tx Hausdorff_space Y TyHausdorff_space (setprod X Y) (product_topology X Tx Y Ty)
Proof:
Proof not loaded.
Theorem. (ex17_1_topology_from_closed_sets)
∀X Tx : set, closed_in X Tx X(∀A : set, closed_in X Tx Aclosed_in X Tx (X A))topology_on X Tx
Proof:
Proof not loaded.
Theorem. (ex17_2_closed_in_closed_subspace)
∀X Tx Y A : set, closed_in X Tx Yclosed_in Y (subspace_topology X Tx Y) Aclosed_in X Tx A
Proof:
Proof not loaded.
Theorem. (ex17_3_product_of_closed_sets_closed)
∀X Tx Y Ty A B : set, closed_in X Tx Aclosed_in Y Ty Bclosed_in (setprod X Y) (product_topology X Tx Y Ty) (setprod A B)
Proof:
Proof not loaded.
Theorem. (ex17_4_open_minus_closed_and_closed_minus_open)
∀X Tx U A : set, topology_on X Txopen_in X Tx Uclosed_in X Tx Aopen_in X Tx (U A) closed_in X Tx (A U)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define no_immediate_successor to be λX a ⇒ ∀c : set, c Xorder_rel X a c∃x : set, x X order_rel X a x order_rel X x c of type setsetprop.
Definition. We define no_immediate_predecessor to be λX b ⇒ ∀c : set, c Xorder_rel X c b∃x : set, x X order_rel X c x order_rel X x b of type setsetprop.
Theorem. (ex17_5_basis_elem_meets_interval)
∀X a b x b0 : set, simply_ordered_set Xa Xb Xorder_rel X a bno_immediate_successor X ano_immediate_predecessor X bx closed_interval_in X a bb0 order_topology_basis Xx b0∃y : set, y b0 y order_interval X a b
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (closure_idempotent_and_closed)
∀X Tx A : set, topology_on X Txclosure_of X Tx (closure_of X Tx A) = closure_of X Tx A closed_in X Tx (closure_of X Tx A)
Proof:
Proof not loaded.
Theorem. (ex17_6a_closure_monotone)
∀X Tx A B : set, topology_on X TxA BB Xclosure_of X Tx A closure_of X Tx B
Proof:
Proof not loaded.
Theorem. (ex17_6b_closure_binunion)
∀X Tx A B : set, topology_on X TxA XB Xclosure_of X Tx (A B) = closure_of X Tx A closure_of X Tx B
Proof:
Proof not loaded.
Theorem. (ex17_6c_closure_Union_contains_Union_closures)
∀X Tx Fam : set, topology_on X Tx(∀A : set, A FamA X) {closure_of X Tx A|AFam} closure_of X Tx ( Fam)
Proof:
Proof not loaded.
Theorem. (ex17_7_counterexample_union_closure)
∃X Tx Fam : set, topology_on X Tx (∀A : set, A FamA X) ¬ (closure_of X Tx ( Fam) {closure_of X Tx A|AFam})
Proof:
Proof not loaded.
Theorem. (ex17_8a_closure_intersection_Subq_intersection_closures)
∀X Tx A B : set, topology_on X Txclosure_of X Tx (A B) closure_of X Tx A closure_of X Tx B
Proof:
Proof not loaded.
Theorem. (ex17_8b_closure_intersection_family_Subq_intersection_closures)
∀X Tx Fam : set, topology_on X Tx(∀A : set, A FamA X)closure_of X Tx (intersection_of_family X Fam) intersection_of_family X {closure_of X Tx A|AFam}
Proof:
Proof not loaded.
Theorem. (ex17_8c_closure_setminus_Subq_closure_left)
∀X Tx A B : set, topology_on X TxA XB Xclosure_of X Tx (A B) closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (ex17_8c_counterexample_equality_fails)
∃X Tx A B : set, topology_on X Tx A X B X closure_of X Tx (A B) (closure_of X Tx A closure_of X Tx B)
Proof:
Proof not loaded.
Theorem. (ex17_9_closure_of_product_subset)
∀X Y Tx Ty A B : set, topology_on X Txtopology_on Y Tyclosure_of (setprod X Y) (product_topology X Tx Y Ty) (setprod A B) = setprod (closure_of X Tx A) (closure_of Y Ty B)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex17_11_product_Hausdorff)
∀X Tx Y Ty : set, Hausdorff_space X TxHausdorff_space Y TyHausdorff_space (setprod X Y) (product_topology X Tx Y Ty)
Proof:
Proof not loaded.
Theorem. (ex17_12_subspace_Hausdorff)
∀X Tx Y : set, Hausdorff_space X TxY XHausdorff_space Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Theorem. (ex17_13_diagonal_closed_iff_Hausdorff)
∀X Tx : set, topology_on X Tx(Hausdorff_space X Tx closed_in (setprod X X) (product_topology X Tx X Tx) {(x,x)|xX})
Proof:
Proof not loaded.
Definition. We define seq_one_over_n to be (λn ∈ ω{inv_nat (ordsucc n)}) of type set.
Theorem. (seq_one_over_n_apply)
∀n : set, n ωapply_fun seq_one_over_n n = inv_nat (ordsucc n)
Proof:
Proof not loaded.
Theorem. (inv_nat_ordsucc_inj)
∀n m : set, n ωm ωinv_nat (ordsucc n) = inv_nat (ordsucc m)n = m
Proof:
Proof not loaded.
Theorem. (omega_binunion)
∀a b : set, a ωb ωa b ω
Proof:
Proof not loaded.
Theorem. (seq_one_over_n_inj)
∀n m : set, n ωm ωapply_fun seq_one_over_n n = apply_fun seq_one_over_n mn = m
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex17_14_sequence_in_finite_complement_topology)
∀x : set, x R∀U : set, U finite_complement_topology Rx U∃N : set, N ω ∀n : set, n ωN napply_fun seq_one_over_n n U
Proof:
Proof not loaded.
Theorem. (lemma_T1_singletons_closed)
∀X Tx : set, topology_on X Tx(T1_space X Tx (∀x : set, x Xclosed_in X Tx {x}))
Proof:
Proof not loaded.
Theorem. (T1_singleton_complement_open)
∀X Tx x : set, T1_space X Txx XX {x} Tx
Proof:
Proof not loaded.
Theorem. (subspace_T1)
∀X Tx Y : set, topology_on X TxY XT1_space X TxT1_space Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Theorem. (ex17_15_T1_characterization)
∀X Tx : set, topology_on X Tx(T1_space X Tx ∀x y : set, x Xy Xx y(∃U : set, U Tx x U y U) (∃V : set, V Tx y V x V))
Proof:
Proof not loaded.
Definition. We define R_nonneg_set to be {xR|0 x} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (K_set_above_positive_bound_finite)
∀b : set, b RRlt 0 bfinite (K_set {yR|Rlt b y})
Proof:
Proof not loaded.
Theorem. (standard_open_neighborhood_disjoint_from_K_set_pos)
∀x : set, x R0 < x¬ (x K_set)∃U : set, U R_standard_topology x U U K_set = Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ray_topology_contains_0_if_contains_1)
∀U : set, U R_ray_topology1 U0 U
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (setminus_Empty_eq)
∀X : set, X Empty = X
Proof:
Proof not loaded.
Theorem. (infinite_R)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (finer_preserves_Hausdorff)
∀X Tx Ty : set, Hausdorff_space X Txtopology_on X TyTx TyHausdorff_space X Ty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (real_2)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (real_3)
Proof:
Proof not loaded.
Definition. We define sqrt2 to be sqrt_SNo_nonneg 2 of type set.
Theorem. (sqrt2_in_R)
Proof:
Proof not loaded.
Theorem. (SNoLt_0_sqrt2)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define R_C_topology to be generated_topology R rational_halfopen_intervals_basis of type set.
Proof:
Proof not loaded.
Definition. We define ex17_17_interval_A to be open_interval 0 sqrt2 of type set.
Definition. We define ex17_17_interval_B to be open_interval sqrt2 3 of type set.
Definition. We define ex17_17_interval_A_closure_lower to be {xR|0 x x < sqrt2} of type set.
Definition. We define ex17_17_interval_A_closure_C to be {xR|0 x x sqrt2} of type set.
Definition. We define ex17_17_interval_B_closure_lower to be {xR|sqrt2 x x < 3} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define ordsq_A to be {(inv_nat n,0)|nω {0}} of type set.
Definition. We define ordsq_B to be {(add_SNo 1 (minus_SNo (inv_nat n)),eps_ 1)|nω {0}} of type set.
Definition. We define ordsq_C to be {pordered_square|∃x : set, p = (x,0) Rlt 0 x Rlt x 1} of type set.
Definition. We define ordsq_D to be {pordered_square|∃x : set, p = (x,eps_ 1) Rlt 0 x Rlt x 1} of type set.
Definition. We define ordsq_E to be {pordered_square|∃y : set, p = (eps_ 1,y) Rlt 0 y Rlt y 1} of type set.
Definition. We define ordsq_p01 to be (0,1) of type set.
Definition. We define ordsq_p10 to be (1,0) of type set.
Definition. We define ordsq_E_closure to be ordsq_E {(eps_ 1,0)} {(eps_ 1,1)} of type set.
Definition. We define ordsq_top_edge_lt1 to be {pordered_square|∃x : set, p = (x,1) x unit_interval Rlt x 1} of type set.
Definition. We define ordsq_C_closure to be ordsq_C ordsq_top_edge_lt1 {ordsq_p10} of type set.
Definition. We define ordsq_D_closure to be ordsq_D ordsq_C ordsq_top_edge_lt1 {ordsq_p10} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_R_R_same_first)
∀x a2 b2 : set, Rlt a2 b2order_rel (setprod R R) (x,a2) (x,b2)
Proof:
Proof not loaded.
Theorem. (order_rel_setprod_R_R_disj)
∀a1 a2 b1 b2 : set, order_rel (setprod R R) (a1,a2) (b1,b2)Rlt a1 b1 (a1 = b1 Rlt a2 b2)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (inv_nat_Rle_1_local)
∀n : set, n ω {0}Rle (inv_nat n) 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (div_SNo_1_eq_inv_nat_local)
∀n : set, SNo ndiv_SNo 1 n = inv_nat n
Proof:
Proof not loaded.
Theorem. (exists_inv_nat_ordsucc_lt_local)
∀r : set, r RRlt 0 r∃N : set, N ω Rlt (inv_nat (ordsucc N)) r
Proof:
Proof not loaded.
Theorem. (inv_nat_ordsucc_antitone_local2)
∀i j : set, i ωj ωi jRlt (inv_nat (ordsucc j)) (inv_nat (ordsucc i))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ordsq_B_lt_p10)
∀w : set, w ordsq_Border_rel (setprod R R) w ordsq_p10
Proof:
Proof not loaded.
Theorem. (ordsq_B_ordsucc_index_increasing)
∀i j : set, i ωj ωi jorder_rel (setprod R R) (add_SNo 1 (minus_SNo (inv_nat (ordsucc i))),eps_ 1) (add_SNo 1 (minus_SNo (inv_nat (ordsucc j))),eps_ 1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define boundary_of to be λX Tx A ⇒ closure_of X Tx A closure_of X Tx (X A) of type setsetsetset.
Theorem. (ex17_19_boundary_properties)
∀X Tx A : set, topology_on X Txboundary_of X Tx A closure_of X Tx A boundary_of X Tx A closure_of X Tx (X A)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define preimage_of to be λX f V ⇒ {xX|apply_fun f x V} of type setsetsetset.
Theorem. (preimage_of_Union)
∀X f Fam : set, preimage_of X f ( Fam) = {preimage_of X f V|VFam}
Proof:
Proof not loaded.
Theorem. (preimage_of_binintersect)
∀X f U V : set, preimage_of X f (U V) = (preimage_of X f U) (preimage_of X f V)
Proof:
Proof not loaded.
Theorem. (preimage_of_mono)
∀X f V W : set, V Wpreimage_of X f V preimage_of X f W
Proof:
Proof not loaded.
Theorem. (preimage_of_binunion)
∀X f U V : set, preimage_of X f (U V) = (preimage_of X f U) (preimage_of X f V)
Proof:
Proof not loaded.
Theorem. (preimage_of_setminus)
∀X f U V : set, preimage_of X f (U V) = (preimage_of X f U) (preimage_of X f V)
Proof:
Proof not loaded.
Theorem. (preimage_of_Empty)
∀X f : set, preimage_of X f Empty = Empty
Proof:
Proof not loaded.
Theorem. (preimage_of_whole)
∀X Y f : set, function_on f X Ypreimage_of X f Y = X
Proof:
Proof not loaded.
Theorem. (preimage_of_complement)
∀X Y f V : set, function_on f X Ypreimage_of X f (Y V) = X preimage_of X f V
Proof:
Proof not loaded.
Theorem. (projection1_apply)
∀X Y p : set, p setprod X Yapply_fun (projection1 X Y) p = p 0
Proof:
Proof not loaded.
Theorem. (projection2_apply)
∀X Y p : set, p setprod X Yapply_fun (projection2 X Y) p = p 1
Proof:
Proof not loaded.
Theorem. (preimage_projection1_rectangle)
∀X Y U : set, U Xpreimage_of (setprod X Y) (projection1 X Y) U = rectangle_set U Y
Proof:
Proof not loaded.
Theorem. (preimage_projection2_rectangle)
∀X Y V : set, V Ypreimage_of (setprod X Y) (projection2 X Y) V = rectangle_set X V
Proof:
Proof not loaded.
Definition. We define continuous_map to be λX Tx Y Ty f ⇒ topology_on X Tx topology_on Y Ty function_on f X Y ∀V : set, V Typreimage_of X f V Tx of type setsetsetsetsetprop.
Theorem. (continuous_map_topology_dom)
∀X Tx Y Ty f : set, continuous_map X Tx Y Ty ftopology_on X Tx
Proof:
Proof not loaded.
Theorem. (continuous_map_topology_cod)
∀X Tx Y Ty f : set, continuous_map X Tx Y Ty ftopology_on Y Ty
Proof:
Proof not loaded.
Theorem. (continuous_map_function_on)
∀X Tx Y Ty f : set, continuous_map X Tx Y Ty ffunction_on f X Y
Proof:
Proof not loaded.
Theorem. (continuous_map_preimage)
∀X Tx Y Ty f : set, continuous_map X Tx Y Ty f∀V : set, V Typreimage_of X f V Tx
Proof:
Proof not loaded.
Theorem. (continuous_map_domain_finer)
∀X Tx Tx' Y Ty f : set, continuous_map X Tx Y Ty ftopology_on X Tx'Tx Tx'continuous_map X Tx' Y Ty f
Proof:
Proof not loaded.
Theorem. (continuous_map_codomain_coarser)
∀X Tx Y Ty Ty' f : set, continuous_map X Tx Y Ty ftopology_on Y Ty'Ty' Tycontinuous_map X Tx Y Ty' f
Proof:
Proof not loaded.
Theorem. (continuous_map_range_restrict)
∀X Tx Y Ty f Z0 : set, continuous_map X Tx Y Ty fZ0 Y(∀x : set, x Xapply_fun f x Z0)continuous_map X Tx Z0 (subspace_topology Y Ty Z0) f
Proof:
Proof not loaded.
Theorem. (continuous_map_range_expand)
∀X Tx Y Ty Z0 Tz0 f : set, continuous_map X Tx Y Ty fY Z0topology_on Z0 Tz0Ty = subspace_topology Z0 Tz0 Ycontinuous_map X Tx Z0 Tz0 f
Proof:
Proof not loaded.
Theorem. (continuous_map_from_subbasis)
∀X Tx Y S f : set, topology_on X Txfunction_on f X Ysubbasis_on Y S(∀s : set, s Spreimage_of X f s Tx)continuous_map X Tx Y (generated_topology_from_subbasis Y S) f
Proof:
Proof not loaded.
Definition. We define continuous_map_total to be λX Tx Y Ty f ⇒ topology_on X Tx topology_on Y Ty total_function_on f X Y ∀V : set, V Typreimage_of X f V Tx of type setsetsetsetsetprop.
Theorem. (continuous_map_total_topology_dom)
∀X Tx Y Ty f : set, continuous_map_total X Tx Y Ty ftopology_on X Tx
Proof:
Proof not loaded.
Theorem. (continuous_map_total_topology_cod)
∀X Tx Y Ty f : set, continuous_map_total X Tx Y Ty ftopology_on Y Ty
Proof:
Proof not loaded.
Theorem. (continuous_map_total_total_function_on)
∀X Tx Y Ty f : set, continuous_map_total X Tx Y Ty ftotal_function_on f X Y
Proof:
Proof not loaded.
Theorem. (continuous_map_total_preimage)
∀X Tx Y Ty f : set, continuous_map_total X Tx Y Ty f∀V : set, V Typreimage_of X f V Tx
Proof:
Proof not loaded.
Theorem. (continuous_map_total_imp)
∀X Tx Y Ty f : set, continuous_map_total X Tx Y Ty fcontinuous_map X Tx Y Ty f
Proof:
Proof not loaded.
Theorem. (const_fun_continuous)
∀X Tx Y Ty x : set, topology_on X Txtopology_on Y Tyx Ycontinuous_map X Tx Y Ty (const_fun X x)
Proof:
Proof not loaded.
Theorem. (const_fun_continuous_total)
∀X Tx Y Ty x : set, topology_on X Txtopology_on Y Tyx Ycontinuous_map_total X Tx Y Ty (const_fun X x)
Proof:
Proof not loaded.
Theorem. (continuous_preserves_closed)
∀X Tx Y Ty f : set, continuous_map X Tx Y Ty f∀C : set, closed_in Y Ty Cclosed_in X Tx (preimage_of X f C)
Proof:
Proof not loaded.
Theorem. (continuous_local_neighborhood)
∀X Tx Y Ty f : set, topology_on X Txtopology_on Y Tyfunction_on f X Y(∀V : set, V Typreimage_of X f V Tx)∀x : set, x X∀V : set, V Tyapply_fun f x V∃U : set, U Tx x U ∀u : set, u Uapply_fun f u V
Proof:
Proof not loaded.
Theorem. (topology_elem_of_local_neighborhoods)
∀X Tx U : set, topology_on X TxU X(∀x : set, x U∃V : set, V Tx x V V U)U Tx
Proof:
Proof not loaded.
Definition. We define continuous_at to be λf x ⇒ function_on f R R x R ∀V : set, V R_standard_topologyapply_fun f x V∃U : set, U R_standard_topology x U ∀u : set, u Uapply_fun f u V of type setsetprop.
Theorem. (continuity_equiv_forms)
∀X Tx Y Ty f : set, topology_on X Txtopology_on Y Ty(continuous_map X Tx Y Ty f function_on f X Y (∀V : set, V Typreimage_of X f V Tx) (∀C : set, closed_in Y Ty Cclosed_in X Tx (preimage_of X f C)) (∀x : set, x X∀V : set, V Tyapply_fun f x V∃U : set, U Tx x U ∀u : set, u Uapply_fun f u V))
Proof:
Proof not loaded.
Theorem. (identity_continuous)
∀X Tx : set, topology_on X Txlet id ≔ {(x,x)|xX} in continuous_map X Tx X Tx id
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define compose_fun to be λX f g ⇒ {(x,apply_fun g (apply_fun f x))|xX} of type setsetsetset.
Proof:
Proof not loaded.
Theorem. (functional_graph_compose_fun)
∀X f g : set, functional_graph (compose_fun X f g)
Proof:
Proof not loaded.
Theorem. (function_on_compose_fun)
∀X Y Z f g : set, function_on f X Yfunction_on g Y Zfunction_on (compose_fun X f g) X Z
Proof:
Proof not loaded.
Theorem. (total_function_on_compose_fun)
∀X Y Z f g : set, function_on f X Yfunction_on g Y Ztotal_function_on (compose_fun X f g) X Z
Proof:
Proof not loaded.
Theorem. (compose_fun_in_function_space)
∀X Y Z f g : set, function_on f X Yfunction_on g Y Zcompose_fun X f g function_space X Z
Proof:
Proof not loaded.
Theorem. (compose_fun_apply)
∀X f g x : set, x Xapply_fun (compose_fun X f g) x = apply_fun g (apply_fun f x)
Proof:
Proof not loaded.
Theorem. (preimage_compose_fun)
∀X Y f g W : set, function_on f X Ypreimage_of X (compose_fun X f g) W = preimage_of X f (preimage_of Y g W)
Proof:
Proof not loaded.
Theorem. (composition_continuous)
∀X Tx Y Ty Z Tz f g : set, continuous_map X Tx Y Ty fcontinuous_map Y Ty Z Tz gcontinuous_map X Tx Z Tz (compose_fun X f g)
Proof:
Proof not loaded.
Theorem. (continuous_construction_rules)
∀X Tx Y Ty Z Tz : set, topology_on X Txtopology_on Y Tytopology_on Z Tz(∀y0 : set, y0 Ycontinuous_map X Tx Y Ty (const_fun X y0)) (∀A : set, A Xcontinuous_map A (subspace_topology X Tx A) X Tx {(y,y)|yA}) (∀f g : set, continuous_map X Tx Y Ty fcontinuous_map Y Ty Z Tz gcontinuous_map X Tx Z Tz (compose_fun X f g)) (∀f A : set, A Xcontinuous_map X Tx Y Ty fcontinuous_map A (subspace_topology X Tx A) Y Ty f) ((∀f Z0 : set, continuous_map X Tx Y Ty fZ0 Y(∀x : set, x Xapply_fun f x Z0)continuous_map X Tx Z0 (subspace_topology Y Ty Z0) f) (∀f Z0 Tz0 : set, continuous_map X Tx Y Ty fY Z0topology_on Z0 Tz0Ty = subspace_topology Z0 Tz0 Ycontinuous_map X Tx Z0 Tz0 f)) (∀f : set, (∃UFam : set, UFam Tx UFam = X (∀U : set, U UFamcontinuous_map U (subspace_topology X Tx U) Y Ty f))continuous_map X Tx Y Ty f)
Proof:
Proof not loaded.
Theorem. (continuous_map_local_cover)
∀X Tx Y Ty f : set, topology_on X Txtopology_on Y Ty(∃UFam : set, UFam Tx UFam = X (∀U : set, U UFamcontinuous_map U (subspace_topology X Tx U) Y Ty f))continuous_map X Tx Y Ty f
Proof:
Proof not loaded.
Theorem. (continuous_on_subspace_rule)
∀X Tx Y Ty f A : set, topology_on X Txtopology_on Y TyA Xcontinuous_map X Tx Y Ty fcontinuous_map A (subspace_topology X Tx A) Y Ty f
Proof:
Proof not loaded.
Theorem. (function_on_subdomain)
∀f X Y A : set, function_on f X YA Xfunction_on f A Y
Proof:
Proof not loaded.
Theorem. (function_on_codomain)
∀f X Y Z : set, function_on f X YY Zfunction_on f X Z
Proof:
Proof not loaded.
Theorem. (total_function_on_codomain)
∀f X Y Z : set, total_function_on f X YY Ztotal_function_on f X Z
Proof:
Proof not loaded.
Theorem. (continuous_map_congr_on)
∀X Tx Y Ty f g : set, continuous_map X Tx Y Ty ffunction_on g X Y(∀x : set, x Xapply_fun f x = apply_fun g x)continuous_map X Tx Y Ty g
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define homeomorphism to be λX Tx Y Ty f ⇒ continuous_map X Tx Y Ty f ∃g : set, continuous_map Y Ty X Tx g (∀x : set, x Xapply_fun g (apply_fun f x) = x) (∀y : set, y Yapply_fun f (apply_fun g y) = y) of type setsetsetsetsetprop.
Theorem. (homeomorphism_continuous)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty fcontinuous_map X Tx Y Ty f
Proof:
Proof not loaded.
Theorem. (homeomorphism_inverse_package)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty f∃g : set, continuous_map Y Ty X Tx g (∀x : set, x Xapply_fun g (apply_fun f x) = x) (∀y : set, y Yapply_fun f (apply_fun g y) = y)
Proof:
Proof not loaded.
Theorem. (homeomorphism_topology_left)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty ftopology_on X Tx
Proof:
Proof not loaded.
Theorem. (homeomorphism_topology_right)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty ftopology_on Y Ty
Proof:
Proof not loaded.
Definition. We define affine_line_R2 to be λa b c ⇒ {pEuclidPlane|add_SNo (mul_SNo a (R2_xcoord p)) (mul_SNo b (R2_ycoord p)) = c} of type setsetsetset.
Theorem. (affine_line_R2_subset)
∀a b c : set, affine_line_R2 a b c EuclidPlane
Proof:
Proof not loaded.
Theorem. (affine_line_R2_in_Power)
∀a b c : set, affine_line_R2 a b c 𝒫 EuclidPlane
Proof:
Proof not loaded.
Theorem. (affine_line_R2_subset_R2)
∀a b c : set, affine_line_R2 a b c setprod R R
Proof:
Proof not loaded.
Theorem. (affine_line_R2_in_Power_R2)
∀a b c : set, affine_line_R2 a b c 𝒫 (setprod R R)
Proof:
Proof not loaded.
Definition. We define affine_line_R2_param_by_x to be λa b c ⇒ graph R (λx : set(x,div_SNo (add_SNo c (minus_SNo (mul_SNo a x))) b)) of type setsetsetset.
Definition. We define affine_line_R2_param_by_y to be λa b c ⇒ graph R (λy : set(div_SNo c a,y)) of type setsetsetset.
Theorem. (affine_line_R2_param_by_x_apply)
∀a b c x : set, x Rapply_fun (affine_line_R2_param_by_x a b c) x = (x,div_SNo (add_SNo c (minus_SNo (mul_SNo a x))) b)
Proof:
Proof not loaded.
Theorem. (affine_line_R2_param_by_y_apply)
∀a b c y : set, y Rapply_fun (affine_line_R2_param_by_y a b c) y = (div_SNo c a,y)
Proof:
Proof not loaded.
Theorem. (projection2_after_affine_line_R2_param_by_y)
∀a b c y : set, a Rc Ry Rapply_fun (projection2 R R) (apply_fun (affine_line_R2_param_by_y a b c) y) = y
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (projection1_after_affine_line_R2_param_by_x)
∀a b c x : set, a Rb Rc Rx Rapply_fun (projection1 R R) (apply_fun (affine_line_R2_param_by_x a b c) x) = x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (projection1_continuous_in_product)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tycontinuous_map (setprod X Y) (product_topology X Tx Y Ty) X Tx (projection1 X Y)
Proof:
Proof not loaded.
Theorem. (projection2_continuous_in_product)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tycontinuous_map (setprod X Y) (product_topology X Tx Y Ty) Y Ty (projection2 X Y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (affine_line_R2_param_by_x_in_line)
∀a b c x : set, a Rb Rc Rx Rb 0apply_fun (affine_line_R2_param_by_x a b c) x affine_line_R2 a b c
Proof:
Proof not loaded.
Theorem. (affine_line_R2_param_by_x_after_projection1_on_line)
∀a b c p : set, a Rb Rc Rb 0p affine_line_R2 a b capply_fun (affine_line_R2_param_by_x a b c) (apply_fun (projection1 R R) p) = p
Proof:
Proof not loaded.
Theorem. (affine_line_R2_param_by_y_in_line)
∀a b c y : set, a Rb Rc Ry Rb = 0a 0apply_fun (affine_line_R2_param_by_y a b c) y affine_line_R2 a b c
Proof:
Proof not loaded.
Theorem. (affine_line_R2_b0_eq_slice)
∀a b c : set, a Rb Rc Rb = 0a 0affine_line_R2 a b c = setprod {div_SNo c a} R
Proof:
Proof not loaded.
Definition. We define same_sign_nonzero_R to be λa b ⇒ (Rlt 0 a Rlt 0 b) (Rlt a 0 Rlt b 0) of type setsetprop.
Theorem. (affine_line_R2_param_by_x_y_decreases_same_sign)
∀a b c x1 x2 : set, a Rb Rc Rb 0same_sign_nonzero_R a bx1 Rx2 RRlt x1 x2Rlt (div_SNo (add_SNo c (minus_SNo (mul_SNo a x2))) b) (div_SNo (add_SNo c (minus_SNo (mul_SNo a x1))) b)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (homeomorphism_injective)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty f∀x1 x2 : set, x1 Xx2 Xapply_fun f x1 = apply_fun f x2x1 = x2
Proof:
Proof not loaded.
Theorem. (continuous_on_subspace)
∀X Tx Y Ty f A : set, topology_on X TxA Xcontinuous_map X Tx Y Ty fcontinuous_map A (subspace_topology X Tx A) Y Ty f
Proof:
Proof not loaded.
Theorem. (homeomorphism_inverse_continuous)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty f∃g : set, continuous_map Y Ty X Tx g (∀x : set, x Xapply_fun g (apply_fun f x) = x) (∀y : set, y Yapply_fun f (apply_fun g y) = y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (apply_fun_union_left)
∀A B Y f g x : set, A B = Emptygraph_domain_subset f Agraph_domain_subset g Btotal_function_on f A Ytotal_function_on g B Yfunctional_graph ffunctional_graph gx Aapply_fun (f g) x = apply_fun f x
Proof:
Proof not loaded.
Theorem. (apply_fun_union_right)
∀A B Y f g x : set, A B = Emptygraph_domain_subset f Agraph_domain_subset g Btotal_function_on f A Ytotal_function_on g B Yfunctional_graph ffunctional_graph gx Bapply_fun (f g) x = apply_fun g x
Proof:
Proof not loaded.
Theorem. (preimage_of_union_functions_total)
∀A B Y f g V : set, A B = Emptygraph_domain_subset f Agraph_domain_subset g Btotal_function_on f A Ytotal_function_on g B Yfunctional_graph ffunctional_graph gpreimage_of (A B) (f g) V = (preimage_of A f V) (preimage_of B g V)
Proof:
Proof not loaded.
Theorem. (subspace_union_of_opens)
∀X Tx A B U V : set, topology_on X TxA TxB TxA B = EmptyU subspace_topology X Tx AV subspace_topology X Tx B(U V) subspace_topology X Tx (A B)
Proof:
Proof not loaded.
Theorem. (pasting_lemma_total_functional)
∀X A B Y Tx Ty f g : set, topology_on X TxA TxB TxA B = Emptygraph_domain_subset f Agraph_domain_subset g Bfunctional_graph ffunctional_graph gcontinuous_map_total A (subspace_topology X Tx A) Y Ty fcontinuous_map_total B (subspace_topology X Tx B) Y Ty gcontinuous_map_total (A B) (subspace_topology X Tx (A B)) Y Ty (f g)
Proof:
Proof not loaded.
Theorem. (pasting_lemma_total_functional_imp)
∀X A B Y Tx Ty f g : set, topology_on X TxA TxB TxA B = Emptygraph_domain_subset f Agraph_domain_subset g Bfunctional_graph ffunctional_graph gcontinuous_map_total A (subspace_topology X Tx A) Y Ty fcontinuous_map_total B (subspace_topology X Tx B) Y Ty gcontinuous_map (A B) (subspace_topology X Tx (A B)) Y Ty (f g)
Proof:
Proof not loaded.
Theorem. (pasting_lemma)
∀X A B Y Tx Ty f g : set, topology_on X Txclosed_in X Tx Aclosed_in X Tx BA B = Xcontinuous_map A (subspace_topology X Tx A) Y Ty fcontinuous_map B (subspace_topology X Tx B) Y Ty g(∀x : set, x (A B)apply_fun f x = apply_fun g x)∃h : set, continuous_map X Tx Y Ty h ((∀x : set, x Aapply_fun h x = apply_fun f x) (∀x : set, x Bapply_fun h x = apply_fun g x))
Proof:
Proof not loaded.
Definition. We define pair_map to be λA f g ⇒ {(a,(apply_fun f a,apply_fun g a))|aA} of type setsetsetset.
Theorem. (pair_map_apply)
∀A X Y f g a : set, a Aapply_fun (pair_map A f g) a = (apply_fun f a,apply_fun g a)
Proof:
Proof not loaded.
Theorem. (pair_map_in_function_space)
∀A X Y f g : set, function_on f A Xfunction_on g A Ypair_map A f g function_space A (setprod X Y)
Proof:
Proof not loaded.
Theorem. (preimage_pair_map_rectangle)
∀A X Y f g U V : set, preimage_of A (pair_map A f g) (rectangle_set U V) = (preimage_of A f U) (preimage_of A g V)
Proof:
Proof not loaded.
Theorem. (maps_into_products_axiom)
∀A Ta X Tx Y Ty f g : set, continuous_map A Ta X Tx fcontinuous_map A Ta Y Ty gcontinuous_map A Ta (setprod X Y) (product_topology X Tx Y Ty) (pair_map A f g)
Proof:
Proof not loaded.
Theorem. (maps_into_products)
∀A Ta X Tx Y Ty f g : set, continuous_map A Ta X Tx fcontinuous_map A Ta Y Ty gcontinuous_map A Ta (setprod X Y) (product_topology X Tx Y Ty) (pair_map A f g)
Proof:
Proof not loaded.
Definition. We define projection_map1 to be λX Y ⇒ projection1 X Y of type setsetset.
Definition. We define projection_map2 to be λX Y ⇒ projection2 X Y of type setsetset.
Theorem. (preimage_of_rectangle_via_projections)
∀A X Y h U V : set, function_on h A (setprod X Y)U XV Ypreimage_of A h (rectangle_set U V) = (preimage_of A (compose_fun A h (projection_map1 X Y)) U) (preimage_of A (compose_fun A h (projection_map2 X Y)) V)
Proof:
Proof not loaded.
Theorem. (projection_maps_continuous)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tycontinuous_map (setprod X Y) (product_topology X Tx Y Ty) X Tx (projection_map1 X Y) continuous_map (setprod X Y) (product_topology X Tx Y Ty) Y Ty (projection_map2 X Y)
Proof:
Proof not loaded.
Theorem. (maps_into_products_converse)
∀A Ta X Tx Y Ty h : set, topology_on X Txtopology_on Y Tycontinuous_map A Ta (setprod X Y) (product_topology X Tx Y Ty) hcontinuous_map A Ta X Tx (compose_fun A h (projection_map1 X Y)) continuous_map A Ta Y Ty (compose_fun A h (projection_map2 X Y))
Proof:
Proof not loaded.
Theorem. (maps_into_products_coords_imp)
∀A Ta X Tx Y Ty h : set, topology_on X Txtopology_on Y Tyfunction_on h A (setprod X Y)continuous_map A Ta X Tx (compose_fun A h (projection_map1 X Y))continuous_map A Ta Y Ty (compose_fun A h (projection_map2 X Y))continuous_map A Ta (setprod X Y) (product_topology X Tx Y Ty) h
Proof:
Proof not loaded.
Theorem. (maps_into_products_iff_coords)
∀A Ta X Tx Y Ty h : set, topology_on X Txtopology_on Y Tyfunction_on h A (setprod X Y)(continuous_map A Ta (setprod X Y) (product_topology X Tx Y Ty) h (continuous_map A Ta X Tx (compose_fun A h (projection_map1 X Y)) continuous_map A Ta Y Ty (compose_fun A h (projection_map2 X Y))))
Proof:
Proof not loaded.
Theorem. (projections_are_continuous)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tycontinuous_map (setprod X Y) (product_topology X Tx Y Ty) X Tx (projection_map1 X Y) continuous_map (setprod X Y) (product_topology X Tx Y Ty) Y Ty (projection_map2 X Y)
Proof:
Proof not loaded.
Theorem. (product_topology_universal)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Ty∃Tprod : set, topology_on (setprod X Y) Tprod continuous_map (setprod X Y) Tprod X Tx (projection_map1 X Y) continuous_map (setprod X Y) Tprod Y Ty (projection_map2 X Y)
Proof:
Proof not loaded.
Theorem. (rectangle_set_as_intersection)
∀X Y U V : set, U XV Yrectangle_set U V = (rectangle_set U Y) (rectangle_set X V)
Proof:
Proof not loaded.
Theorem. (product_topology_coarsest)
∀X Tx Y Ty Tprod : set, topology_on X Txtopology_on Y Tytopology_on (setprod X Y) Tprodcontinuous_map (setprod X Y) Tprod X Tx (projection_map1 X Y)continuous_map (setprod X Y) Tprod Y Ty (projection_map2 X Y)coarser_than (product_topology X Tx Y Ty) Tprod
Proof:
Proof not loaded.
Definition. We define metric_on to be λX d ⇒ function_on d (setprod X X) R (∀x y : set, x Xy Xapply_fun d (x,y) = apply_fun d (y,x)) (∀x : set, x Xapply_fun d (x,x) = 0) (∀x y : set, x Xy X¬ (Rlt (apply_fun d (x,y)) 0) (apply_fun d (x,y) = 0x = y)) (∀x y z : set, x Xy Xz X¬ (Rlt (add_SNo (apply_fun d (x,y)) (apply_fun d (y,z))) (apply_fun d (x,z)))) of type setsetprop.
Definition. We define metric_on_total to be λX d ⇒ metric_on X d total_function_on d (setprod X X) R of type setsetprop.
Theorem. (metric_on_function_on)
∀X d : set, metric_on X dfunction_on d (setprod X X) R
Proof:
Proof not loaded.
Definition. We define EuclidPlane_metric to be graph (setprod EuclidPlane EuclidPlane) (λpq : setdistance_R2 (pq 0) (pq 1)) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (metric_on_symmetric)
∀X d x y : set, metric_on X dx Xy Xapply_fun d (x,y) = apply_fun d (y,x)
Proof:
Proof not loaded.
Theorem. (metric_on_diag_zero)
∀X d x : set, metric_on X dx Xapply_fun d (x,x) = 0
Proof:
Proof not loaded.
Theorem. (metric_on_nonneg)
∀X d x y : set, metric_on X dx Xy X¬ (Rlt (apply_fun d (x,y)) 0)
Proof:
Proof not loaded.
Theorem. (metric_on_zero_eq)
∀X d x y : set, metric_on X dx Xy Xapply_fun d (x,y) = 0x = y
Proof:
Proof not loaded.
Theorem. (metric_on_pos_of_neq)
∀X d x y : set, metric_on X dx Xy X¬ (x = y)Rlt 0 (apply_fun d (x,y))
Proof:
Proof not loaded.
Definition. We define metric_neg_dists to be λX d x A ⇒ {minus_SNo (apply_fun d (x,a))|aA} of type setsetsetsetset.
Theorem. (metric_neg_dists_in_R)
∀X d x A : set, metric_on X dx XA X∀t : set, t metric_neg_dists X d x At R
Proof:
Proof not loaded.
Theorem. (metric_neg_dists_le_0)
∀X d x A : set, metric_on X dx XA X∀t : set, t metric_neg_dists X d x ARle t 0
Proof:
Proof not loaded.
Theorem. (metric_on_triangle)
∀X d x y z : set, metric_on X dx Xy Xz X¬ (Rlt (add_SNo (apply_fun d (x,y)) (apply_fun d (y,z))) (apply_fun d (x,z)))
Proof:
Proof not loaded.
Theorem. (metric_on_total_imp_metric_on)
∀X d : set, metric_on_total X dmetric_on X d
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (metric_triangle_Rle)
∀X d x y z : set, metric_on X dx Xy Xz XRle (apply_fun d (x,z)) (add_SNo (apply_fun d (x,y)) (apply_fun d (y,z)))
Proof:
Proof not loaded.
Definition. We define open_ball to be λX d x r ⇒ {yX|Rlt (apply_fun d (x,y)) r} of type setsetsetsetset.
Theorem. (open_ballE1)
∀X d x r y : set, y open_ball X d x ry X
Proof:
Proof not loaded.
Theorem. (open_ballE2)
∀X d x r y : set, y open_ball X d x rRlt (apply_fun d (x,y)) r
Proof:
Proof not loaded.
Theorem. (open_ballI)
∀X d x r y : set, y XRlt (apply_fun d (x,y)) ry open_ball X d x r
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (open_ball_subset_X)
∀X d x r : set, open_ball X d x r X
Proof:
Proof not loaded.
Theorem. (open_ball_in_Power)
∀X d x r : set, open_ball X d x r 𝒫 X
Proof:
Proof not loaded.
Theorem. (center_in_open_ball)
∀X d x r : set, metric_on X dx XRlt 0 rx open_ball X d x r
Proof:
Proof not loaded.
Theorem. (open_ball_nonempty)
∀X d x r : set, metric_on X dx XRlt 0 ropen_ball X d x r Empty
Proof:
Proof not loaded.
Theorem. (exists_eps_lt_pos)
∀d : set, d RRlt 0 d∃Nω, eps_ N < d
Proof:
Proof not loaded.
Theorem. (exists_eps_lt_two_pos)
∀a b : set, a Rb RRlt 0 aRlt 0 b∃r3 : set, r3 R Rlt 0 r3 Rlt r3 a Rlt r3 b
Proof:
Proof not loaded.
Theorem. (exists_eps_lt_four_pos)
∀a b c d : set, a Rb Rc Rd RRlt 0 aRlt 0 bRlt 0 cRlt 0 d∃r3 : set, r3 R Rlt 0 r3 Rlt r3 a Rlt r3 b Rlt r3 c Rlt r3 d
Proof:
Proof not loaded.
Theorem. (Rle_Rlt_tra)
∀a b c : set, Rle a bRlt b cRlt a c
Proof:
Proof not loaded.
Theorem. (Rlt_Rle_tra)
∀a b c : set, Rlt a bRle b cRlt a c
Proof:
Proof not loaded.
Theorem. (Rlt_add_SNo)
∀a b c d : set, Rlt a bRlt c dRlt (add_SNo a c) (add_SNo b d)
Proof:
Proof not loaded.
Theorem. (open_ball_pair_dist_lt_add_radius)
∀X d x r y z : set, metric_on X dx Xy open_ball X d x rz open_ball X d x rRlt (apply_fun d (y,z)) (add_SNo r r)
Proof:
Proof not loaded.
Theorem. (open_ball_pair_dist_lt_eps_pred)
∀X d x n y z : set, metric_on X dx Xn ωy open_ball X d x (eps_ (ordsucc n))z open_ball X d x (eps_ (ordsucc n))Rlt (apply_fun d (y,z)) (eps_ n)
Proof:
Proof not loaded.
Theorem. (metric_ball_intersect_centers_lt_add)
∀X d x y p r1 r2 : set, metric_on X dx Xy Xp Xr1 Rr2 Rp open_ball X d x r1p open_ball X d y r2Rlt (apply_fun d (x,y)) (add_SNo r1 r2)
Proof:
Proof not loaded.
Definition. We define well_ordered_set to be λX ⇒ ordinal X X R X rational_numbers X setprod 2 ω X setprod R R of type setprop.
Axiom. (well_ordering_theorem_axiom) We take the following as an axiom:
∀A : set, ∃W : set, well_ordered_set W equip A W
Theorem. (well_ordering_theorem_equip)
∀A : set, ∃W : set, well_ordered_set W equip A W
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define eps_separated_set to be λX d S n ⇒ S X ∀x y : set, x Sy S¬ (x = y)¬ (Rlt (apply_fun d (x,y)) (eps_ n)) of type setsetsetsetprop.
Definition. We define maximal_eps_separated_set to be λX d S n ⇒ eps_separated_set X d S n ∀x : set, x X(∀y : set, y S¬ (Rlt (apply_fun d (x,y)) (eps_ n)))x S of type setsetsetsetprop.
Theorem. (maximal_eps_separated_set_implies_cover)
∀X d S n : set, metric_on X dn ωmaximal_eps_separated_set X d S nX (cSopen_ball X d c (eps_ n))
Proof:
Proof not loaded.
Definition. We define maximal_eps_separated_set_on to be λX d Y S n ⇒ (Y X) (S Y) (∀x y : set, x Sy S¬ (x = y)¬ (Rlt (apply_fun d (x,y)) (eps_ n))) (∀x : set, x Y(∀y : set, y S¬ (Rlt (apply_fun d (x,y)) (eps_ n)))x S) of type setsetsetsetsetprop.
Theorem. (maximal_eps_separated_set_on_exists)
∀X d Y n : set, metric_on X dn ωY X∃S : set, maximal_eps_separated_set_on X d Y S n
Proof:
Proof not loaded.
Theorem. (maximal_eps_separated_set_on_implies_cover)
∀X d Y S n : set, metric_on X dn ωmaximal_eps_separated_set_on X d Y S nY (cSopen_ball X d c (eps_ n))
Proof:
Proof not loaded.
Theorem. (eps_separated_imp_eps_succ_ball_point_unique)
∀X d S n p x y : set, metric_on X dn ωeps_separated_set X d S np Xx Sy Sp open_ball X d x (eps_ (ordsucc n))p open_ball X d y (eps_ (ordsucc n))x = y
Proof:
Proof not loaded.
Theorem. (open_ball_refine_intersection)
∀X d c1 c2 x r1 r2 : set, metric_on X dc1 Xc2 Xx Xr1 Rr2 RRlt 0 r1Rlt 0 r2x open_ball X d c1 r1x open_ball X d c2 r2∃r3 : set, r3 R Rlt 0 r3 open_ball X d x r3 (open_ball X d c1 r1) (open_ball X d c2 r2)
Proof:
Proof not loaded.
Theorem. (open_ball_refine_center)
∀X d c x r : set, metric_on X dc Xx Xr RRlt 0 rx open_ball X d c r∃s : set, s R Rlt 0 s open_ball X d x s open_ball X d c r
Proof:
Proof not loaded.
Theorem. (open_ball_refine_center_eps)
∀X d c x r : set, metric_on X dc Xx Xr RRlt 0 rx open_ball X d c r∃N : set, N ω open_ball X d x (eps_ N) open_ball X d c r
Proof:
Proof not loaded.
Definition. We define metric_topology to be λX d ⇒ generated_topology X (famunion X (λx ⇒ {open_ball X d x r|rR, Rlt 0 r})) of type setsetset.
Theorem. (open_balls_form_basis)
∀X d : set, metric_on X dbasis_on X (famunion X (λx ⇒ {open_ball X d x r|rR, Rlt 0 r}))
Proof:
Proof not loaded.
Theorem. (open_in_metric_topology_has_eps_ball_sub)
∀X d U x : set, metric_on X dopen_in X (metric_topology X d) Ux U∃N : set, N ω open_ball X d x (eps_ N) U
Proof:
Proof not loaded.
Theorem. (metric_topology_is_topology)
∀X d : set, metric_on X dtopology_on X (metric_topology X d)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (open_ball_open_in_metric_topology)
∀X d x r : set, metric_on X dx XRlt 0 ropen_in X (metric_topology X d) (open_ball X d x r)
Proof:
Proof not loaded.
Theorem. (open_ball_in_metric_topology)
∀X d x r : set, metric_on X dx XRlt 0 ropen_ball X d x r metric_topology X d
Proof:
Proof not loaded.
Theorem. (metric_topology_Hausdorff)
∀X d : set, metric_on X dHausdorff_space X (metric_topology X d)
Proof:
Proof not loaded.
Theorem. (metric_epsilon_delta_continuity)
∀X dX Y dY f : set, metric_on X dXmetric_on Y dYfunction_on f X Y(continuous_map X (metric_topology X dX) Y (metric_topology Y dY) f (∀x0 : set, x0 X∀eps : set, eps R Rlt 0 eps∃delta : set, delta R Rlt 0 delta (∀x : set, x XRlt (apply_fun dX (x,x0)) deltaRlt (apply_fun dY (apply_fun f x,apply_fun f x0)) eps)))
Proof:
Proof not loaded.
Definition. We define sequence_in to be λseq A ⇒ function_on seq ω A of type setsetprop.
Definition. We define sequence_on to be λseq A ⇒ function_on seq ω A of type setsetprop.
Theorem. (apply_fun_of_graph_eq)
∀f A : set, ∀g : setset, ∀a : set, f = graph A ga Aapply_fun f a = g a
Proof:
Proof not loaded.
Definition. We define converges_to to be λX Tx seq x ⇒ topology_on X Tx sequence_on seq X x X ∀U : set, U Txx U∃N : set, N ω ∀n : set, n ωN napply_fun seq n U of type setsetsetsetprop.
Theorem. (converges_to_topology)
∀X Tx seq x : set, converges_to X Tx seq xtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (converges_to_sequence_on)
∀X Tx seq x : set, converges_to X Tx seq xsequence_on seq X
Proof:
Proof not loaded.
Theorem. (converges_to_point_in_X)
∀X Tx seq x : set, converges_to X Tx seq xx X
Proof:
Proof not loaded.
Theorem. (converges_to_neighborhoods)
∀X Tx seq x : set, converges_to X Tx seq x∀U : set, U Txx U∃N : set, N ω ∀n : set, n ωN napply_fun seq n U
Proof:
Proof not loaded.
Definition. We define map_sequence to be λf seq ⇒ compose_fun ω seq f of type setsetset.
Definition. We define image_of to be λf U ⇒ Repl U (λx ⇒ apply_fun f x) of type setsetset.
Definition. We define function_sequence_value to be λf_seq n x ⇒ apply_fun (apply_fun f_seq n) x of type setsetsetset.
Theorem. (image_of_mono)
∀f U V : set, U Vimage_of f U image_of f V
Proof:
Proof not loaded.
Theorem. (image_of_sub_codomain)
∀f X Y U : set, function_on f X YU Ximage_of f U Y
Proof:
Proof not loaded.
Theorem. (image_of_Empty)
∀f : set, image_of f Empty = Empty
Proof:
Proof not loaded.
Theorem. (image_of_binunion)
∀f U V : set, image_of f (U V) = (image_of f U) (image_of f V)
Proof:
Proof not loaded.
Theorem. (image_of_Union)
∀f Fam : set, image_of f ( Fam) = {image_of f U|UFam}
Proof:
Proof not loaded.
Theorem. (image_of_compose_fun)
∀X f g U : set, U Ximage_of (compose_fun X f g) U = image_of g (image_of f U)
Proof:
Proof not loaded.
Definition. We define sequence_converges_metric to be λX d seq x ⇒ metric_on X d sequence_on seq X x X ∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀n : set, n ωN nRlt (apply_fun d (apply_fun seq n,x)) eps of type setsetsetsetprop.
Theorem. (sequence_converges_metric_metric_on)
∀X d seq x : set, sequence_converges_metric X d seq xmetric_on X d
Proof:
Proof not loaded.
Theorem. (sequence_converges_metric_sequence_on)
∀X d seq x : set, sequence_converges_metric X d seq xsequence_on seq X
Proof:
Proof not loaded.
Theorem. (sequence_converges_metric_point_in_X)
∀X d seq x : set, sequence_converges_metric X d seq xx X
Proof:
Proof not loaded.
Theorem. (sequence_converges_metric_eps)
∀X d seq x : set, sequence_converges_metric X d seq x∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀n : set, n ωN nRlt (apply_fun d (apply_fun seq n,x)) eps
Proof:
Proof not loaded.
Theorem. (metric_limits_unique)
∀X d seq x y : set, metric_on X dsequence_on seq Xsequence_converges_metric X d seq xsequence_converges_metric X d seq yx = y
Proof:
Proof not loaded.
Definition. We define uniform_convergence_functions to be λX dX Y dY f_seq f ⇒ metric_on X dX metric_on Y dY function_on f_seq ω (function_space X Y) function_on f X Y (∀n : set, n ωfunction_on (apply_fun f_seq n) X Y) ∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀n : set, n ωN n∀x : set, x XRlt (apply_fun dY (apply_fun (apply_fun f_seq n) x,apply_fun f x)) eps of type setsetsetsetsetsetprop.
Theorem. (uniform_convergence_functions_metric_on_X)
∀X dX Y dY f_seq f : set, uniform_convergence_functions X dX Y dY f_seq fmetric_on X dX
Proof:
Proof not loaded.
Theorem. (uniform_convergence_functions_metric_on_Y)
∀X dX Y dY f_seq f : set, uniform_convergence_functions X dX Y dY f_seq fmetric_on Y dY
Proof:
Proof not loaded.
Theorem. (uniform_convergence_functions_fseq)
∀X dX Y dY f_seq f : set, uniform_convergence_functions X dX Y dY f_seq ffunction_on f_seq ω (function_space X Y)
Proof:
Proof not loaded.
Theorem. (uniform_convergence_functions_f)
∀X dX Y dY f_seq f : set, uniform_convergence_functions X dX Y dY f_seq ffunction_on f X Y
Proof:
Proof not loaded.
Theorem. (uniform_convergence_functions_pointwise)
∀X dX Y dY f_seq f : set, uniform_convergence_functions X dX Y dY f_seq f∀n : set, n ωfunction_on (apply_fun f_seq n) X Y
Proof:
Proof not loaded.
Theorem. (uniform_convergence_functions_eps)
∀X dX Y dY f_seq f : set, uniform_convergence_functions X dX Y dY f_seq f∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀n : set, n ωN n∀x : set, x XRlt (apply_fun dY (apply_fun (apply_fun f_seq n) x,apply_fun f x)) eps
Proof:
Proof not loaded.
Theorem. (Rle_tra)
∀a b c : set, Rle a bRle b cRle a c
Proof:
Proof not loaded.
Theorem. (Rle_add_SNo_2)
∀x y z : set, x Ry Rz RRle y zRle (add_SNo x y) (add_SNo x z)
Proof:
Proof not loaded.
Theorem. (uniform_limit_of_continuous_is_continuous)
∀X dX Y dY f_seq f : set, metric_on X dXmetric_on Y dYfunction_on f_seq ω (function_space X Y)(∀n : set, n ωcontinuous_map X (metric_topology X dX) Y (metric_topology Y dY) (apply_fun f_seq n))uniform_convergence_functions X dX Y dY f_seq fcontinuous_map X (metric_topology X dX) Y (metric_topology Y dY) f
Proof:
Proof not loaded.
Theorem. (sequence_convergence_metric)
∀X d seq x : set, sequence_converges_metric X d seq xsequence_converges_metric X d seq x
Proof:
Proof not loaded.
Theorem. (continuity_via_sequences_metric)
∀X dX Y dY f : set, metric_on X dXmetric_on Y dYfunction_on f X Y(continuous_map X (metric_topology X dX) Y (metric_topology Y dY) f ∀seq x : set, sequence_converges_metric X dX seq xsequence_converges_metric Y dY ({(n,apply_fun f (apply_fun seq n))|nω}) (apply_fun f x))
Proof:
Proof not loaded.
Definition. We define quotient_topology to be λX Tx Y f ⇒ {V𝒫 Y|{xX|apply_fun f x V} Tx} of type setsetsetsetset.
Definition. We define quotient_map to be λX Tx Y f ⇒ topology_on X Tx function_on f X Y (∀y : set, y Y∃x : set, x X apply_fun f x = y) of type setsetsetsetprop.
Theorem. (quotient_topology_is_topology)
∀X Tx Y f : set, topology_on X Txquotient_map X Tx Y ftopology_on Y (quotient_topology X Tx Y f)
Proof:
Proof not loaded.
Theorem. (quotient_universal_property)
∀X Tx Y Ty f : set, quotient_map X Tx Y ftopology_on Y TyTy quotient_topology X Tx Y fcontinuous_map X Tx Y Ty f
Proof:
Proof not loaded.
Definition. We define separation_of to be λX U V ⇒ U 𝒫 X V 𝒫 X U V = Empty U Empty V Empty U V = X of type setsetsetprop.
Theorem. (separation_of_complement)
∀X U : set, U XU EmptyU Xseparation_of X U (X U)
Proof:
Proof not loaded.
Definition. We define connected_space to be λX Tx ⇒ topology_on X Tx ¬ (∃U V : set, U Tx V Tx separation_of X U V) of type setsetprop.
Theorem. (connected_space_topology)
∀X Tx : set, connected_space X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (connected_space_no_separation)
∀X Tx : set, connected_space X Tx¬ (∃U V : set, U Tx V Tx separation_of X U V)
Proof:
Proof not loaded.
Theorem. (homeomorphism_preserves_connected)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty fconnected_space X Txconnected_space Y Ty
Proof:
Proof not loaded.
Theorem. (clopen_gives_separation)
∀X Tx A : set, topology_on X TxA EmptyA Xopen_in X Tx Aclosed_in X Tx A∃U V : set, U Tx V Tx separation_of X U V
Proof:
Proof not loaded.
Theorem. (separation_gives_clopen)
∀X Tx U V : set, topology_on X TxU TxV Txseparation_of X U V∃A : set, A Empty A X open_in X Tx A closed_in X Tx A
Proof:
Proof not loaded.
Theorem. (connected_iff_no_nontrivial_clopen)
∀X Tx : set, topology_on X Tx(connected_space X Tx ¬ (∃A : set, A Empty A X open_in X Tx A closed_in X Tx A))
Proof:
Proof not loaded.
Theorem. (separation_subspace_limit_points)
∀X Tx Y A B : set, topology_on X TxY X(((A subspace_topology X Tx Y B subspace_topology X Tx Y) separation_of Y A B) (separation_of Y A B ¬ (∃b : set, b B limit_point_of X Tx A b) ¬ (∃a : set, a A limit_point_of X Tx B a)))
Proof:
Proof not loaded.
Theorem. (connected_subset_in_separation_side)
∀X Tx C D Y : set, topology_on X TxY Xconnected_space Y (subspace_topology X Tx Y)C TxD Txseparation_of X C DY C Y D
Proof:
Proof not loaded.
Theorem. (union_connected_common_point)
∀X Tx F : set, topology_on X Tx(∀C : set, C FC X)(∀C : set, C Fconnected_space C (subspace_topology X Tx C))(∃x : set, ∀C : set, C Fx C)connected_space ( F) (subspace_topology X Tx ( F))
Proof:
Proof not loaded.
Theorem. (connected_with_limit_points)
∀X Tx A B : set, topology_on X TxA XB Xconnected_space A (subspace_topology X Tx A)A BB closure_of X Tx Aconnected_space B (subspace_topology X Tx B)
Proof:
Proof not loaded.
Theorem. (continuous_image_connected)
∀X Tx Y Ty f : set, connected_space X Txcontinuous_map X Tx Y Ty fconnected_space (image_of f X) (subspace_topology Y Ty (image_of f X))
Proof:
Proof not loaded.
Definition. We define R_upper_bound to be λA u ⇒ u R ∀a : set, a Aa RRle a u of type setsetprop.
Definition. We define R_lub to be λA l ⇒ l R (∀a : set, a Aa RRle a l) (∀u : set, u R(∀a : set, a Aa RRle a u)Rle l u) of type setsetprop.
Theorem. (R_lub_in_R)
∀A l : set, R_lub A ll R
Proof:
Proof not loaded.
Theorem. (R_lub_unique)
∀A l1 l2 : set, R_lub A l1R_lub A l2l1 = l2
Proof:
Proof not loaded.
Theorem. (R_lub_Sing0)
Proof:
Proof not loaded.
Theorem. (not_imp)
∀A B : prop, ¬ (AB)A ¬ B
Proof:
Proof not loaded.
Theorem. (R_lub_exists)
∀A : set, (∃a0 : set, a0 A)(∀a : set, a Aa R)(∃u : set, u R ∀a : set, a Aa RRle a u)∃l : set, R_lub A l
Proof:
Proof not loaded.
Theorem. (R_lub_approx_from_below)
∀A l eps : set, R_lub A leps RRlt 0 eps∃a : set, a A a R Rlt (add_SNo l (minus_SNo eps)) a
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define between_in_order to be λY u r v ⇒ (order_rel Y u r order_rel Y r v) (order_rel Y v r order_rel Y r u) r = u r = v of type setsetsetsetprop.
Theorem. (between_in_orderI_left)
∀Y u r v : set, order_rel Y u rorder_rel Y r vbetween_in_order Y u r v
Proof:
Proof not loaded.
Theorem. (between_in_orderI_right)
∀Y u r v : set, order_rel Y v rorder_rel Y r ubetween_in_order Y u r v
Proof:
Proof not loaded.
Theorem. (between_in_orderI_eq_left)
∀Y u v : set, between_in_order Y u u v
Proof:
Proof not loaded.
Theorem. (between_in_orderI_eq_right)
∀Y u v : set, between_in_order Y u v v
Proof:
Proof not loaded.
Theorem. (intermediate_value_theorem)
∀X Tx Y f a b r : set, connected_space X Txsimply_ordered_set Ycontinuous_map X Tx Y (order_topology Y) fa Xb Xr Ybetween_in_order Y (apply_fun f a) r (apply_fun f b)∃c : set, c X apply_fun f c = r
Proof:
Proof not loaded.
Theorem. (connected_subsets_real_are_intervals)
∀A : set, A Rconnected_space A (subspace_topology R R_standard_topology A)∀x y z : set, x Ay Az R(Rlt x z Rlt z y Rlt y z Rlt z x)z A
Proof:
Proof not loaded.
Theorem. (image_of_id_const_is_slice)
∀X y0 : set, image_of (pair_map X {(x,x)|xX} (const_fun X y0)) X = setprod X {y0}
Proof:
Proof not loaded.
Theorem. (slice_X_connected)
∀X Tx Y Ty y0 : set, connected_space X Txtopology_on Y Tyy0 Yconnected_space (setprod X {y0}) (subspace_topology (setprod X Y) (product_topology X Tx Y Ty) (setprod X {y0}))
Proof:
Proof not loaded.
Theorem. (image_of_const_id_is_slice)
∀Y x0 : set, image_of (pair_map Y (const_fun Y x0) {(y,y)|yY}) Y = setprod {x0} Y
Proof:
Proof not loaded.
Theorem. (homeomorphism_const_id_slice)
∀X Tx Y Ty x0 : set, topology_on X Txtopology_on Y Tyx0 Xhomeomorphism Y Ty (setprod {x0} Y) (subspace_topology (setprod X Y) (product_topology X Tx Y Ty) (setprod {x0} Y)) (pair_map Y (const_fun Y x0) {(y,y)|yY})
Proof:
Proof not loaded.
Theorem. (slice_Y_connected)
∀X Tx Y Ty x0 : set, connected_space Y Tytopology_on X Txx0 Xconnected_space (setprod {x0} Y) (subspace_topology (setprod X Y) (product_topology X Tx Y Ty) (setprod {x0} Y))
Proof:
Proof not loaded.
Theorem. (finite_product_connected)
∀X Tx Y Ty : set, connected_space X Txconnected_space Y Tyconnected_space (setprod X Y) (product_topology X Tx Y Ty)
Proof:
Proof not loaded.
Theorem. (total_function_on_graph)
∀A Y : set, ∀g : setset, (∀a : set, a Ag a Y)total_function_on (graph A g) A Y
Proof:
Proof not loaded.
Theorem. (box_basis_is_basis_on)
∀I Xi : set, (∀i : set, i Itopology_on (space_family_set Xi i) (space_family_topology Xi i))basis_on (product_space I Xi) (box_basis I Xi)
Proof:
Proof not loaded.
Theorem. (box_topology_is_topology_on)
∀I Xi : set, (∀i : set, i Itopology_on (space_family_set Xi i) (space_family_topology Xi i))topology_on (product_space I Xi) (box_topology I Xi)
Proof:
Proof not loaded.
Definition. We define R_omega_space to be product_space ω (const_space_family ω R R_standard_topology) of type set.
Definition. We define R_omega_box_topology to be box_topology ω (const_space_family ω R R_standard_topology) of type set.
Definition. We define R_omega_product_topology to be product_topology_full ω (const_space_family ω R R_standard_topology) of type set.
Definition. We define bounded_sequence_Romega to be λf ⇒ ∃M : set, M R ∀n : set, n ωapply_fun f n open_interval (minus_SNo M) M of type setprop.
Definition. We define bounded_sequences_Romega to be {fR_omega_space|bounded_sequence_Romega f} of type set.
Definition. We define unbounded_sequence_Romega to be λf ⇒ ∀M : set, M R∃n : set, n ω ¬ (apply_fun f n open_interval (minus_SNo M) M) of type setprop.
Definition. We define unbounded_sequences_Romega to be {fR_omega_space|unbounded_sequence_Romega f} of type set.
Theorem. (Romega_coord_in_R)
∀f i : set, f R_omega_spacei ωapply_fun f i R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_tilde to be λn ⇒ {fR_omega_space|∀i : set, i ωn iapply_fun f i = 0} of type setset.
Definition. We define Romega_infty to be {Romega_tilde n|nω} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_zero to be const_fun ω 0 of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Romega_tilde_nonempty)
∀n : set, n ωRomega_tilde n Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (dense_in_meets_nonempty_open)
∀A X Tx U : set, topology_on X Txclosure_of X Tx A = XU TxU EmptyU A Empty
Proof:
Proof not loaded.
Theorem. (connected_space_if_dense_connected_subset)
∀X Tx A : set, topology_on X TxA Xconnected_space A (subspace_topology X Tx A)closure_of X Tx A = Xconnected_space X Tx
Proof:
Proof not loaded.
Theorem. (graph_omega_in_Romega_space)
∀h : setset, (∀i : set, i ωh i R)graph ω h R_omega_space
Proof:
Proof not loaded.
Definition. We define Romega_singleton_seq to be λr ⇒ graph ω (λi : setIf_i (0 i) 0 r) of type setset.
Proof:
Proof not loaded.
Theorem. (Romega_singleton_seq_apply)
∀r i : set, r Ri ωapply_fun (Romega_singleton_seq r) i = If_i (0 i) 0 r
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_singleton_map to be graph R Romega_singleton_seq of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_extend_seq to be λk p ⇒ graph ω (λi : setIf_i (ordsucc k i) 0 (If_i (i = ordsucc k) (p 1) (apply_fun (p 0) i))) of type setsetset.
Theorem. (Romega_extend_seq_apply)
∀k p i : set, i ωapply_fun (Romega_extend_seq k p) i = If_i (ordsucc k i) 0 (If_i (i = ordsucc k) (p 1) (apply_fun (p 0) i))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_extend_map to be λk ⇒ graph (setprod (Romega_tilde k) R) (λp : setRomega_extend_seq k p) of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_restrict_seq to be λk f ⇒ graph ω (λi : setIf_i (k i) 0 (apply_fun f i)) of type setsetset.
Theorem. (Romega_restrict_seq_apply)
∀k f i : set, k ωf R_omega_spacei ωapply_fun (Romega_restrict_seq k f) i = If_i (k i) 0 (apply_fun f i)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_coord_map to be λi ⇒ graph R_omega_space (λf : setapply_fun f i) of type setset.
Theorem. (Romega_coord_map_apply)
∀i f : set, i ωf R_omega_spaceapply_fun (Romega_coord_map i) f = apply_fun f i
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_restrict_map to be λk ⇒ graph R_omega_space (λf : setRomega_restrict_seq k f) of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_split_map to be λk ⇒ graph (Romega_tilde (ordsucc k)) (λf : set(Romega_restrict_seq k f,apply_fun f (ordsucc k))) of type setset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (R_omega_space_ext)
∀f g : set, f R_omega_spaceg R_omega_space(∀i : set, i ωapply_fun f i = apply_fun g i)f = g
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (finite_subset_of_omega_bounded)
∀F : set, F ωfinite F∃nω, ∀mF, m n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define path_between to be λX x y p ⇒ function_on p unit_interval X apply_fun p 0 = x apply_fun p 1 = y of type setsetsetsetprop.
Definition. We define path_connected_space to be λX Tx ⇒ topology_on X Tx ∀x y : set, x Xy X∃p : set, path_between X x y p continuous_map unit_interval unit_interval_topology X Tx p of type setsetprop.
Theorem. (path_between_pair0)
∀X x y p : set, path_between X x y pfunction_on p unit_interval X apply_fun p 0 = x
Proof:
Proof not loaded.
Theorem. (path_between_function_on)
∀X x y p : set, path_between X x y pfunction_on p unit_interval X
Proof:
Proof not loaded.
Theorem. (path_between_at_zero)
∀X x y p : set, path_between X x y papply_fun p 0 = x
Proof:
Proof not loaded.
Theorem. (path_between_at_one)
∀X x y p : set, path_between X x y papply_fun p 1 = y
Proof:
Proof not loaded.
Theorem. (path_betweenI)
∀X x y p : set, function_on p unit_interval Xapply_fun p 0 = xapply_fun p 1 = ypath_between X x y p
Proof:
Proof not loaded.
Theorem. (path_witness_between)
∀X Tx x y p : set, (path_between X x y p continuous_map unit_interval unit_interval_topology X Tx p)path_between X x y p
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (path_connected_space_topology)
∀X Tx : set, path_connected_space X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (path_connected_space_paths)
∀X Tx x y : set, path_connected_space X Txx Xy X∃p : set, path_between X x y p continuous_map unit_interval unit_interval_topology X Tx p
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (path_between_exists)
∀X x y : set, x Xy X∃p : set, path_between X x y p
Proof:
Proof not loaded.
Theorem. (separation_has_elements)
∀X U V : set, separation_of X U V(∃x : set, x U) (∃y : set, y V)
Proof:
Proof not loaded.
Theorem. (separation_subsets)
∀X U V : set, separation_of X U VU X V X
Proof:
Proof not loaded.
Theorem. (subset_elem)
∀A B x : set, A Bx Ax B
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (continuous_image_path_connected)
∀X Tx Y Ty f : set, path_connected_space X Txcontinuous_map X Tx Y Ty f(∀y : set, y Y∃x : set, x X apply_fun f x = y)path_connected_space Y Ty
Proof:
Proof not loaded.
Definition. We define path_component_of to be λX Tx x ⇒ {yX|∃p : set, function_on p unit_interval X continuous_map unit_interval unit_interval_topology X Tx p apply_fun p 0 = x apply_fun p 1 = y} of type setsetsetset.
Theorem. (path_component_symmetric_axiom)
∀X Tx x y : set, topology_on X Txx Xy Xy path_component_of X Tx xx path_component_of X Tx y
Proof:
Proof not loaded.
Definition. We define unit_interval_left_half to be {tunit_interval|¬ (Rlt (eps_ 1) t)} of type set.
Definition. We define unit_interval_right_half to be {tunit_interval|¬ (Rlt t (eps_ 1))} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define double_map_left_half to be graph unit_interval_left_half (λt : setmul_SNo 2 t) of type set.
Definition. We define double_minus_one_map_right_half to be graph unit_interval_right_half (λt : setadd_SNo (mul_SNo 2 t) (minus_SNo 1)) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Rlt_mul2_left_iff)
∀a t : set, a Rt R(Rlt a (mul_SNo 2 t) Rlt (mul_SNo (eps_ 1) a) t)
Proof:
Proof not loaded.
Theorem. (Rlt_mul2_right_iff)
∀t b : set, t Rb R(Rlt (mul_SNo 2 t) b Rlt t (mul_SNo (eps_ 1) b))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (path_component_transitive_axiom)
∀X Tx x y z : set, topology_on X Txx Xy Xz Xy path_component_of X Tx xz path_component_of X Tx yz path_component_of X Tx x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (subspace_path_connected_implies_in_path_component)
∀X Tx V y z : set, topology_on X TxV Xpath_connected_space V (subspace_topology X Tx V)y Vz Vz path_component_of X Tx y
Proof:
Proof not loaded.
Theorem. (path_component_reflexive)
∀X Tx x : set, topology_on X Txx Xx path_component_of X Tx x
Proof:
Proof not loaded.
Theorem. (path_components_equivalence_relation)
∀X Tx : set, topology_on X Tx(∀x : set, x Xx path_component_of X Tx x) (∀x y : set, x Xy Xy path_component_of X Tx xx path_component_of X Tx y) (∀x y z : set, x Xy Xz Xy path_component_of X Tx xz path_component_of X Tx yz path_component_of X Tx x)
Proof:
Proof not loaded.
Definition. We define component_of to be λX Tx x ⇒ {yX|∃C : set, connected_space C (subspace_topology X Tx C) x C y C} of type setsetsetset.
Definition. We define locally_connected to be λX Tx ⇒ topology_on X Tx ∀x : set, x X∀U : set, U Txx U∃V : set, V Tx x V V U connected_space V (subspace_topology X Tx V) of type setsetprop.
Theorem. (locally_connected_topology)
∀X Tx : set, locally_connected X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (locally_connected_local)
∀X Tx x U : set, locally_connected X Txx XU Txx U∃V : set, V Tx x V V U connected_space V (subspace_topology X Tx V)
Proof:
Proof not loaded.
Theorem. (open_subspace_locally_connected)
∀X Tx Y : set, locally_connected X TxY Txlocally_connected Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Definition. We define locally_path_connected to be λX Tx ⇒ topology_on X Tx ∀x : set, x X∀U : set, U Txx U∃V : set, V Tx x V V U path_connected_space V (subspace_topology X Tx V) of type setsetprop.
Proof:
Proof not loaded.
Theorem. (locally_path_connected_local)
∀X Tx x U : set, locally_path_connected X Txx XU Txx U∃V : set, V Tx x V V U path_connected_space V (subspace_topology X Tx V)
Proof:
Proof not loaded.
Theorem. (singleton_subspace_connected)
∀X Tx x : set, topology_on X Txx Xconnected_space {x} (subspace_topology X Tx {x})
Proof:
Proof not loaded.
Theorem. (point_in_component)
∀X Tx x : set, topology_on X Txx Xx component_of X Tx x
Proof:
Proof not loaded.
Theorem. (connected_subspace_subset)
∀X Tx C : set, topology_on X Txconnected_space C (subspace_topology X Tx C)C X
Proof:
Proof not loaded.
Theorem. (component_of_connected)
∀X Tx x : set, topology_on X Txx Xconnected_space (component_of X Tx x) (subspace_topology X Tx (component_of X Tx x))
Proof:
Proof not loaded.
Theorem. (component_of_eq_if_in)
∀X Tx x y : set, topology_on X Txx Xy component_of X Tx xcomponent_of X Tx y = component_of X Tx x
Proof:
Proof not loaded.
Theorem. (component_of_whole)
∀X Tx x : set, connected_space X Txx Xcomponent_of X Tx x = X
Proof:
Proof not loaded.
Theorem. (path_component_of_whole)
∀X Tx x : set, path_connected_space X Txx Xpath_component_of X Tx x = X
Proof:
Proof not loaded.
Definition. We define pairwise_disjoint to be λFam ⇒ ∀U V : set, U FamV FamU VU V = Empty of type setprop.
Definition. We define covers to be λX U ⇒ ∀x : set, x X∃u : set, u U x u of type setsetprop.
Theorem. (Subq_Union_implies_covers)
∀X Fam : set, X Famcovers X Fam
Proof:
Proof not loaded.
Theorem. (covers_implies_Subq_Union)
∀X Fam : set, covers X FamX Fam
Proof:
Proof not loaded.
Theorem. (path_components_open)
∀X Tx : set, locally_path_connected X Tx∀x : set, x Xopen_in X Tx (path_component_of X Tx x)
Proof:
Proof not loaded.
Theorem. (components_equal_path_components)
∀X Tx : set, locally_path_connected X Tx∀x : set, x Xpath_component_of X Tx x = component_of X Tx x
Proof:
Proof not loaded.
Theorem. (components_are_closed)
∀X Tx : set, topology_on X Tx∀x : set, x Xclosed_in X Tx (component_of X Tx x)
Proof:
Proof not loaded.
Theorem. (components_are_open_in_locally_connected)
∀X Tx : set, locally_connected X Tx∀x : set, x Xopen_in X Tx (component_of X Tx x)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (quotient_preserves_local_connectedness)
∀X Tx Y f : set, quotient_map X Tx Y flocally_connected X Txlocally_connected Y (quotient_topology X Tx Y f)
Proof:
Proof not loaded.
Definition. We define quasicomponent_of to be λX Tx x ⇒ {yX|∀U : set, open_in X Tx Uclosed_in X Tx Ux Uy U} of type setsetsetset.
Theorem. (components_vs_quasicomponents)
∀X Tx : set, topology_on X Tx(∀x : set, component_of X Tx x quasicomponent_of X Tx x) (locally_connected X Tx∀x : set, x Xcomponent_of X Tx x = quasicomponent_of X Tx x)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Axiom. (component_of_Romega_box_zero_subset_Romega_infty) We take the following as an axiom:
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Axiom. (ordered_square_locally_connected) We take the following as an axiom:
Proof:
Proof not loaded.
Axiom. (ordered_square_not_locally_path_connected) We take the following as an axiom:
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Axiom. (path_connected_not_locally_connected_subset_of_plane_exists) We take the following as an axiom:
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define open_cover_of to be λX Tx Fam ⇒ topology_on X Tx Fam 𝒫 X X Fam (∀U : set, U FamU Tx) of type setsetsetprop.
Theorem. (open_cover_ofI)
∀X Tx Fam : set, topology_on X TxFam 𝒫 XX Fam(∀U : set, U FamU Tx)open_cover_of X Tx Fam
Proof:
Proof not loaded.
Theorem. (open_cover_of_topology)
∀X Tx Fam : set, open_cover_of X Tx Famtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (open_cover_of_family_sub)
∀X Tx Fam : set, open_cover_of X Tx FamFam 𝒫 X
Proof:
Proof not loaded.
Theorem. (open_cover_of_covers)
∀X Tx Fam : set, open_cover_of X Tx FamX Fam
Proof:
Proof not loaded.
Theorem. (open_cover_of_implies_covers)
∀X Tx Fam : set, open_cover_of X Tx Famcovers X Fam
Proof:
Proof not loaded.
Theorem. (open_cover_of_members_open)
∀X Tx Fam U : set, open_cover_of X Tx FamU FamU Tx
Proof:
Proof not loaded.
Theorem. (open_cover_of_union_eq)
∀X Tx Fam : set, open_cover_of X Tx Fam Fam = X
Proof:
Proof not loaded.
Theorem. (open_cover_of_members_open_in)
∀X Tx Fam U : set, open_cover_of X Tx FamU Famopen_in X Tx U
Proof:
Proof not loaded.
Definition. We define restrict_family_to_subspace to be λFam Y ⇒ {U Y|UFam} of type setsetset.
Proof:
Proof not loaded.
Theorem. (open_cover_of_restrict_to_subspace)
∀X Tx Fam Y : set, open_cover_of X Tx FamY Xopen_cover_of Y (subspace_topology X Tx Y) (restrict_family_to_subspace Fam Y)
Proof:
Proof not loaded.
Definition. We define has_finite_subcover to be λX Tx Fam ⇒ ∃G : set, G Fam finite G X G of type setsetsetprop.
Theorem. (has_finite_subcoverI)
∀X Tx Fam G : set, G Fam finite G X Ghas_finite_subcover X Tx Fam
Proof:
Proof not loaded.
Definition. We define compact_space to be λX Tx ⇒ topology_on X Tx ∀Fam : set, open_cover_of X Tx Famhas_finite_subcover X Tx Fam of type setsetprop.
Theorem. (compact_space_topology)
∀X Tx : set, compact_space X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (compact_space_subcover_property)
∀X Tx : set, compact_space X Tx∀Fam : set, open_cover_of X Tx Famhas_finite_subcover X Tx Fam
Proof:
Proof not loaded.
Theorem. (compact_space_singleton)
∀X Tx a : set, X = {a}topology_on X Txcompact_space X Tx
Proof:
Proof not loaded.
Theorem. (Heine_Borel_subcover)
∀X Tx Fam : set, compact_space X Txopen_cover_of X Tx Famhas_finite_subcover X Tx Fam
Proof:
Proof not loaded.
Theorem. (compact_subspace_via_ambient_covers)
∀X Tx Y : set, topology_on X TxY X(compact_space Y (subspace_topology X Tx Y) ∀Fam : set, (Fam Tx Y Fam)has_finite_subcover Y Tx Fam)
Proof:
Proof not loaded.
Theorem. (closed_subspace_compact)
∀X Tx Y : set, compact_space X Txclosed_in X Tx Ycompact_space Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Theorem. (Hausdorff_separate_point_compact_set_aux)
∀X Tx Y x : set, Hausdorff_space X TxY Xcompact_space Y (subspace_topology X Tx Y)x Xx Y∃U V : set, U Tx V Tx x U Y V U V = Empty
Proof:
Proof not loaded.
Theorem. (compact_subspace_in_Hausdorff_closed)
∀X Tx Y : set, Hausdorff_space X TxY Xcompact_space Y (subspace_topology X Tx Y)closed_in X Tx Y
Proof:
Proof not loaded.
Theorem. (Hausdorff_separate_point_compact_set)
∀X Tx Y x : set, Hausdorff_space X TxY Xcompact_space Y (subspace_topology X Tx Y)x Xx Y∃U V : set, U Tx V Tx x U Y V U V = Empty
Proof:
Proof not loaded.
Definition. We define image_of_fun to be λf X ⇒ image_of f X of type setsetset.
Theorem. (continuous_image_compact)
∀X Tx Y Ty f : set, compact_space X Txcontinuous_map X Tx Y Ty fcompact_space (image_of_fun f X) (subspace_topology Y Ty (image_of_fun f X))
Proof:
Proof not loaded.
Theorem. (tube_lemma)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tycompact_space Y Ty∀x0 : set, x0 X∀N : set, N product_topology X Tx Y Ty setprod {x0} Y N∃U : set, U Tx x0 U setprod U Y N
Proof:
Proof not loaded.
Definition. We define bijection to be λX Y f ⇒ function_on f X Y (∀y : set, y Y∃x : set, x X apply_fun f x = y (∀x' : set, x' Xapply_fun f x' = yx' = x)) of type setsetsetprop.
Theorem. (equip_of_bijection)
∀X Y f : set, bijection X Y fequip X Y
Proof:
Proof not loaded.
Theorem. (bijection_graph_of_bij)
∀X Y : set, ∀g : setset, bij X Y gbijection X Y (graph X g)
Proof:
Proof not loaded.
Theorem. (bijection_compose_fun)
∀X Y Z f g : set, bijection X Y fbijection Y Z gbijection X Z (compose_fun X f g)
Proof:
Proof not loaded.
Definition. We define inv_fun_graph to be λX f Y ⇒ {(y,inv X (λx : setapply_fun f x) y)|yY} of type setsetsetset.
Theorem. (inv_fun_graph_apply)
∀X Y f y : set, y Yapply_fun (inv_fun_graph X f Y) y = inv X (λx : setapply_fun f x) y
Proof:
Proof not loaded.
Theorem. (bijection_surj)
∀X Y f y : set, bijection X Y fy Y∃x : set, x X apply_fun f x = y
Proof:
Proof not loaded.
Theorem. (bijection_inj)
∀X Y f u v : set, bijection X Y fu Xv Xapply_fun f u = apply_fun f vu = v
Proof:
Proof not loaded.
Theorem. (bijection_drop_last)
∀m F e : set, m ωbijection (ordsucc m) F ebijection m (F {apply_fun e m}) e
Proof:
Proof not loaded.
Theorem. (inv_fun_graph_right_inverse)
∀X Y f y : set, bijection X Y fy Yapply_fun f (apply_fun (inv_fun_graph X f Y) y) = y
Proof:
Proof not loaded.
Theorem. (inv_fun_graph_left_inverse)
∀X Y f x : set, bijection X Y fx Xapply_fun (inv_fun_graph X f Y) (apply_fun f x) = x
Proof:
Proof not loaded.
Theorem. (inv_fun_graph_preimage_eq_image)
∀X Y f A : set, bijection X Y fA Xpreimage_of Y (inv_fun_graph X f Y) A = image_of_fun f A
Proof:
Proof not loaded.
Definition. We define Abs to be abs_SNo of type setset.
Theorem. (compact_to_Hausdorff_inverse_continuous)
∀X Tx Y Ty f : set, compact_space X TxHausdorff_space Y Tycontinuous_map X Tx Y Ty fbijection X Y fcontinuous_map Y Ty X Tx (inv_fun_graph X f Y)
Proof:
Proof not loaded.
Theorem. (compact_to_Hausdorff_bijection_homeomorphism)
∀X Tx Y Ty f : set, compact_space X TxHausdorff_space Y Tycontinuous_map X Tx Y Ty fbijection X Y fhomeomorphism X Tx Y Ty f
Proof:
Proof not loaded.
Definition. We define bounded_subset_of_reals to be λA ⇒ ∃M : set, M R ∀x : set, x A¬ (Rlt M (Abs x)) of type setprop.
Theorem. (omega_in_R)
∀n : set, n ωn R
Proof:
Proof not loaded.
Theorem. (ordsucc_in_R)
∀n : set, n ωordsucc n R
Proof:
Proof not loaded.
Theorem. (interval_bounds_Abs)
∀M x : set, M Rx RRlt (minus_SNo M) xRlt x M¬ (Rlt M (Abs x))
Proof:
Proof not loaded.
Theorem. (finite_product_compact)
∀X Tx Y Ty : set, compact_space X Txcompact_space Y Tycompact_space (setprod X Y) (product_topology X Tx Y Ty)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define limit_point_compact to be λX Tx ⇒ topology_on X Tx ∀A : set, A Xinfinite A∃x : set, limit_point_of X Tx A x of type setsetprop.
Theorem. (limit_point_compact_topology)
∀X Tx : set, limit_point_compact X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (limit_point_compact_property)
∀X Tx A : set, limit_point_compact X TxA Xinfinite A∃x : set, limit_point_of X Tx A x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define locally_compact to be λX Tx ⇒ topology_on X Tx ∀x : set, x X∃U : set, U Tx x U compact_space (closure_of X Tx U) (subspace_topology X Tx (closure_of X Tx U)) of type setsetprop.
Theorem. (locally_compact_topology)
∀X Tx : set, locally_compact X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (locally_compact_local)
∀X Tx x : set, locally_compact X Txx X∃U : set, U Tx x U compact_space (closure_of X Tx U) (subspace_topology X Tx (closure_of X Tx U))
Proof:
Proof not loaded.
Theorem. (Hausdorff_compact_sets_closed)
∀X Tx A : set, Hausdorff_space X TxA Xcompact_space A (subspace_topology X Tx A)closed_in X Tx A
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define one_point_compactification to be λX Tx Y Ty ⇒ compact_space Y Ty Hausdorff_space Y Ty X Y ∃p : set, p Y ¬ p X subspace_topology Y Ty X = Tx (∀y : set, y Yy X y = p) of type setsetsetsetprop.
Theorem. (one_point_compactification_exists)
∀X Tx : set, locally_compact X TxHausdorff_space X Tx∃Y Ty : set, one_point_compactification X Tx Y Ty
Proof:
Proof not loaded.
Theorem. (ex29_local_compactness_exercises)
∀X Tx : set, locally_compact X TxHausdorff_space X Tx∃Y Ty : set, one_point_compactification X Tx Y Ty
Proof:
Proof not loaded.
Definition. We define relation_on to be λle J ⇒ ∀a b : set, (a,b) lea J b J of type setsetprop.
Definition. We define partial_order_on to be λJ le ⇒ relation_on le J (∀a : set, a J(a,a) le) (∀a b : set, a Jb J(a,b) le(b,a) lea = b) (∀a b c : set, a Jb Jc J(a,b) le(b,c) le(a,c) le) of type setsetprop.
Theorem. (partial_order_on_refl)
∀J le : set, partial_order_on J le∀a : set, a J(a,a) le
Proof:
Proof not loaded.
Theorem. (partial_order_on_antisym)
∀J le : set, partial_order_on J le∀a b : set, a Jb J(a,b) le(b,a) lea = b
Proof:
Proof not loaded.
Theorem. (partial_order_on_trans)
∀J le : set, partial_order_on J le∀a b c : set, a Jb Jc J(a,b) le(b,c) le(a,c) le
Proof:
Proof not loaded.
Definition. We define directed_set to be λJ le ⇒ (J Empty partial_order_on J le) ∀a b : set, a Jb J∃c : set, c J (a,c) le (b,c) le of type setsetprop.
Theorem. (directed_set_partial_order)
∀J le : set, directed_set J lepartial_order_on J le
Proof:
Proof not loaded.
Theorem. (directed_set_refl)
∀J le : set, directed_set J le∀a : set, a J(a,a) le
Proof:
Proof not loaded.
Theorem. (directed_set_trans)
∀J le : set, directed_set J le∀a b c : set, a Jb Jc J(a,b) le(b,c) le(a,c) le
Proof:
Proof not loaded.
Theorem. (directed_set_nonempty)
∀J le : set, directed_set J leJ Empty
Proof:
Proof not loaded.
Theorem. (directed_set_upper_bound_property)
∀J le : set, directed_set J le∀i j : set, i Jj J∃k : set, k J (i,k) le (j,k) le
Proof:
Proof not loaded.
Theorem. (directed_set_upper_bound)
∀J le i : set, directed_set J lei J∃k : set, k J (i,k) le
Proof:
Proof not loaded.
Theorem. (directed_set_pair_upper_bound)
∀J le i j : set, directed_set J lei Jj J∃k : set, k J (i,k) le (j,k) le
Proof:
Proof not loaded.
Theorem. (examples_of_directed_sets)
∀J le : set, directed_set J ledirected_set J le
Proof:
Proof not loaded.
Definition. We define rel_restrict to be λle K ⇒ {ple|p 0 K p 1 K} of type setsetset.
Theorem. (rel_restrict_def)
∀le K : set, rel_restrict le K = {ple|p 0 K p 1 K}
Proof:
Proof not loaded.
Theorem. (rel_restrictE)
∀le K a b : set, (a,b) rel_restrict le K(a,b) le a K b K
Proof:
Proof not loaded.
Theorem. (rel_restrictI)
∀le K a b : set, (a,b) lea Kb K(a,b) rel_restrict le K
Proof:
Proof not loaded.
Theorem. (cofinal_subset_directed)
∀J le K : set, directed_set J leK J(∀a : set, a J∃b : set, b K (a,b) le)directed_set K (rel_restrict le K)
Proof:
Proof not loaded.
Definition. We define net_on to be λnet ⇒ ∃J le X : set, directed_set J le total_function_on net J X functional_graph net graph_domain_subset net J of type setprop.
Definition. We define net_in_space to be λX net ⇒ ∃J le : set, directed_set J le total_function_on net J X functional_graph net graph_domain_subset net J of type setsetprop.
Theorem. (net_in_space_domain_unique)
∀X net J le J' le' : set, directed_set J le total_function_on net J X functional_graph net graph_domain_subset net Jdirected_set J' le' total_function_on net J' X functional_graph net graph_domain_subset net J'J = J'
Proof:
Proof not loaded.
Definition. We define net_pack to be λJ le net ⇒ (J,(le,net)) of type setsetsetset.
Definition. We define net_pack_index to be λN ⇒ N 0 of type setset.
Definition. We define net_pack_le to be λN ⇒ (N 1) 0 of type setset.
Definition. We define net_pack_fun to be λN ⇒ (N 1) 1 of type setset.
Theorem. (net_pack_index_unfold)
∀N : set, net_pack_index N = N 0
Proof:
Proof not loaded.
Theorem. (net_pack_le_unfold)
∀N : set, net_pack_le N = (N 1) 0
Proof:
Proof not loaded.
Theorem. (net_pack_fun_unfold)
∀N : set, net_pack_fun N = (N 1) 1
Proof:
Proof not loaded.
Theorem. (net_pack_def)
∀J le net : set, net_pack J le net = (J,(le,net))
Proof:
Proof not loaded.
Theorem. (net_pack_index_eq)
∀J le net : set, net_pack_index (net_pack J le net) = J
Proof:
Proof not loaded.
Theorem. (net_pack_le_eq)
∀J le net : set, net_pack_le (net_pack J le net) = le
Proof:
Proof not loaded.
Theorem. (net_pack_fun_eq)
∀J le net : set, net_pack_fun (net_pack J le net) = net
Proof:
Proof not loaded.
Definition. We define net_pack_in_space to be λX N ⇒ ∃J le net : set, N = net_pack J le net directed_set J le total_function_on net J X functional_graph net graph_domain_subset net J of type setsetprop.
Theorem. (net_pack_in_space_unpack_eq)
∀X N J le net : set, net_pack_in_space X NN = net_pack J le netdirected_set J le total_function_on net J X functional_graph net graph_domain_subset net J
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (graph_subset_setprod)
∀A Y : set, ∀g : setset, (∀a : set, a Ag a Y)graph A g setprod A Y
Proof:
Proof not loaded.
Theorem. (graph_in_function_space)
∀A Y : set, ∀g : setset, (∀a : set, a Ag a Y)graph A g function_space A Y
Proof:
Proof not loaded.
Definition. We define subnet_of to be λnet sub ⇒ ∃J leJ K leK X phi : set, directed_set J leJ directed_set K leK total_function_on net J X functional_graph net total_function_on sub K X functional_graph sub total_function_on phi K J functional_graph phi graph_domain_subset net J graph_domain_subset sub K graph_domain_subset phi K (∀i j : set, i Kj K(i,j) leK(apply_fun phi i,apply_fun phi j) leJ) (∀j : set, j J∃k : set, k K (j,apply_fun phi k) leJ) (∀k : set, k Kapply_fun sub k = apply_fun net (apply_fun phi k)) of type setsetprop.
Theorem. (pair_order_pred)
∀K le i j : set, (i,j) {qsetprod K K|(q 1) 0 (q 0) 0 ((q 0) 1,(q 1) 1) le}(j 0) (i 0) ((i 1),(j 1)) le
Proof:
Proof not loaded.
Theorem. (subnet_implies_net_on)
∀net sub : set, subnet_of net subnet_on sub
Proof:
Proof not loaded.
Theorem. (subnet_implies_net_on_source)
∀net sub : set, subnet_of net subnet_on net
Proof:
Proof not loaded.
Beginning of Section PropN2
Variable P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 : prop
Theorem. (and8I)
P1P2P3P4P5P6P7P8P1 P2 P3 P4 P5 P6 P7 P8
Proof:
Proof not loaded.
Theorem. (and9I)
P1P2P3P4P5P6P7P8P9P1 P2 P3 P4 P5 P6 P7 P8 P9
Proof:
Proof not loaded.
Theorem. (and10I)
P1P2P3P4P5P6P7P8P9P10P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Proof:
Proof not loaded.
Theorem. (and11I)
P1P2P3P4P5P6P7P8P9P10P11P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Proof:
Proof not loaded.
Theorem. (and12I)
P1P2P3P4P5P6P7P8P9P10P11P12P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Proof:
Proof not loaded.
Theorem. (and13I)
P1P2P3P4P5P6P7P8P9P10P11P12P13P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
Proof:
Proof not loaded.
Theorem. (and14I)
P1P2P3P4P5P6P7P8P9P10P11P12P13P14P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
Proof:
Proof not loaded.
End of Section PropN2
Theorem. (subnet_of_refl_witnessed)
∀J le X net : set, directed_set J letotal_function_on net J Xfunctional_graph netgraph_domain_subset net Jsubnet_of net net
Proof:
Proof not loaded.
Theorem. (subnet_of_refl)
∀net : set, net_on netsubnet_of net net
Proof:
Proof not loaded.
Definition. We define accumulation_point_of_net to be λX Tx net x ⇒ ∃J le : set, topology_on X Tx directed_set J le total_function_on net J X functional_graph net graph_domain_subset net J x X ∀U : set, U Txx U∀j0 : set, j0 J∃j : set, j J (j0,j) le apply_fun net j U of type setsetsetsetprop.
Definition. We define accumulation_point_of_net_on to be λX Tx net J le x ⇒ topology_on X Tx directed_set J le total_function_on net J X functional_graph net graph_domain_subset net J x X ∀U : set, U Txx U∀j0 : set, j0 J∃j : set, j J (j0,j) le apply_fun net j U of type setsetsetsetsetsetprop.
Proof:
Proof not loaded.
Definition. We define net_converges to be λX Tx net x ⇒ ∃J le : set, topology_on X Tx directed_set J le total_function_on net J X functional_graph net graph_domain_subset net J x X ∀U : set, U Txx U∃i0 : set, i0 J ∀i : set, i J(i0,i) leapply_fun net i U of type setsetsetsetprop.
Definition. We define net_converges_on to be λX Tx net J le x ⇒ topology_on X Tx directed_set J le total_function_on net J X functional_graph net graph_domain_subset net J x X ∀U : set, U Txx U∃i0 : set, i0 J ∀i : set, i J(i0,i) leapply_fun net i U of type setsetsetsetsetsetprop.
Theorem. (net_converges_on_implies_net_converges)
∀X Tx net J le x : set, net_converges_on X Tx net J le xnet_converges X Tx net x
Proof:
Proof not loaded.
Theorem. (net_converges_on_implies_net_in_space)
∀X Tx net J le x : set, net_converges_on X Tx net J le xnet_in_space X net
Proof:
Proof not loaded.
Theorem. (net_converges_implies_net_in_space)
∀X Tx net x : set, net_converges X Tx net xnet_in_space X net
Proof:
Proof not loaded.
Theorem. (net_converges_on_in_subspace_topology)
∀X Tx A net J le x : set, topology_on X TxA Xdirected_set J letotal_function_on net J Afunctional_graph netgraph_domain_subset net Jx Anet_converges_on X Tx net J le xnet_converges_on A (subspace_topology X Tx A) net J le x
Proof:
Proof not loaded.
Theorem. (net_converges_implies_exists_net_converges_on)
∀X Tx net x : set, net_converges X Tx net x∃J le : set, net_converges_on X Tx net J le x
Proof:
Proof not loaded.
Theorem. (net_converges_on_domain_unique)
∀X Tx net J le J' le' x : set, net_converges_on X Tx net J le xnet_converges_on X Tx net J' le' xJ = J'
Proof:
Proof not loaded.
Theorem. (net_converges_implies_accumulation_point)
∀X Tx net x : set, net_converges X Tx net xaccumulation_point_of_net X Tx net x
Proof:
Proof not loaded.
Theorem. (net_converges_implies_net_on)
∀X Tx net x : set, net_converges X Tx net xnet_on net
Proof:
Proof not loaded.
Definition. We define subnet_of_witness to be λnet sub J leJ K leK X phi ⇒ directed_set J leJ directed_set K leK total_function_on net J X functional_graph net graph_domain_subset net J total_function_on sub K X functional_graph sub graph_domain_subset sub K total_function_on phi K J functional_graph phi graph_domain_subset phi K (∀i j : set, i Kj K(i,j) leK(apply_fun phi i,apply_fun phi j) leJ) (∀j : set, j J∃k : set, k K (j,apply_fun phi k) leJ) (∀k : set, k Kapply_fun sub k = apply_fun net (apply_fun phi k)) of type setsetsetsetsetsetsetsetprop.
Theorem. (subnet_of_witness_dirJ)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phidirected_set J leJ
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_dirK)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phidirected_set K leK
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_compose_fun)
∀net J leJ K leK X phi : set, directed_set J leJdirected_set K leKtotal_function_on net J Xfunctional_graph netgraph_domain_subset net Jtotal_function_on phi K Jfunctional_graph phigraph_domain_subset phi K(∀i j : set, i Kj K(i,j) leK(apply_fun phi i,apply_fun phi j) leJ)(∀j : set, j J∃k : set, k K (j,apply_fun phi k) leJ)subnet_of_witness net (compose_fun K phi net) J leJ K leK X phi
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_map)
∀net sub J leJ K leK X phi Y f : set, subnet_of_witness net sub J leJ K leK X phifunction_on f X Ysubnet_of_witness (compose_fun J net f) (compose_fun K sub f) J leJ K leK Y phi
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_trans)
∀net sub sub2 J leJ K leK L leL X phi psi : set, subnet_of_witness net sub J leJ K leK X phisubnet_of_witness sub sub2 K leK L leL X psisubnet_of_witness net sub2 J leJ L leL X (compose_fun L psi phi)
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_totnet)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phitotal_function_on net J X
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_graphnet)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phifunctional_graph net
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_domnet)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phigraph_domain_subset net J
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_totsub)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phitotal_function_on sub K X
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_graphsub)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phifunctional_graph sub
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_domsub)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phigraph_domain_subset sub K
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_totphi)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phitotal_function_on phi K J
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_graphphi)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phifunctional_graph phi
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_domphi)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phigraph_domain_subset phi K
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_mono)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phi(∀i j : set, i Kj K(i,j) leK(apply_fun phi i,apply_fun phi j) leJ)
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_cofinal)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phi(∀j : set, j J∃k : set, k K (j,apply_fun phi k) leJ)
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_tail_above)
∀net sub J leJ K leK X phi j0 : set, subnet_of_witness net sub J leJ K leK X phij0 J∃k0 : set, k0 K ∀k : set, k K(k0,k) leK(j0,apply_fun phi k) leJ
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_vals)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phi(∀k : set, k Kapply_fun sub k = apply_fun net (apply_fun phi k))
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_implies_subnet_of)
∀net sub J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phisubnet_of net sub
Proof:
Proof not loaded.
Theorem. (subnet_of_implies_exists_subnet_of_witness)
∀net sub : set, subnet_of net sub∃J leJ K leK X phi : set, subnet_of_witness net sub J leJ K leK X phi
Proof:
Proof not loaded.
Theorem. (subnet_of_witness_congr)
∀net1 net2 sub1 sub2 J1 J2 leJ1 leJ2 K1 K2 leK1 leK2 X phi : set, net1 = net2sub1 = sub2J1 = J2leJ1 = leJ2K1 = K2leK1 = leK2subnet_of_witness net1 sub1 J1 leJ1 K1 leK1 X phisubnet_of_witness net2 sub2 J2 leJ2 K2 leK2 X phi
Proof:
Proof not loaded.
Definition. We define net_pack_converges to be λX Tx N x ⇒ ∃J le net : set, N = net_pack J le net net_converges_on X Tx net J le x of type setsetsetsetprop.
Theorem. (net_pack_converges_implies_x_in_space)
∀X Tx N x : set, net_pack_converges X Tx N xx X
Proof:
Proof not loaded.
Theorem. (net_pack_converges_implies_topology_on)
∀X Tx N x : set, net_pack_converges X Tx N xtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (net_pack_converges_implies_net_converges)
∀X Tx N x : set, net_pack_converges X Tx N xnet_converges X Tx (net_pack_fun N) x
Proof:
Proof not loaded.
Definition. We define subnet_pack_of to be λN S ⇒ ∃X phi : set, subnet_of_witness (net_pack_fun N) (net_pack_fun S) (net_pack_index N) (net_pack_le N) (net_pack_index S) (net_pack_le S) X phi of type setsetprop.
Definition. We define subnet_pack_of_in to be λX N S ⇒ ∃phi : set, subnet_of_witness (net_pack_fun N) (net_pack_fun S) (net_pack_index N) (net_pack_le N) (net_pack_index S) (net_pack_le S) X phi of type setsetsetprop.
Theorem. (subnet_pack_of_in_trans)
∀X N S T : set, subnet_pack_of_in X N Ssubnet_pack_of_in X S Tsubnet_pack_of_in X N T
Proof:
Proof not loaded.
Definition. We define setprod_le to be λK1 le1 K2 le2 ⇒ {qsetprod (setprod K1 K2) (setprod K1 K2)|(((q 0) 0,(q 1) 0) le1) (((q 0) 1,(q 1) 1) le2)} of type setsetsetsetset.
Theorem. (setprod_le_pred)
∀K1 le1 K2 le2 a b : set, (a,b) setprod_le K1 le1 K2 le2((a 0,b 0) le1) ((a 1,b 1) le2)
Proof:
Proof not loaded.
Theorem. (directed_set_setprod)
∀K1 le1 K2 le2 : set, directed_set K1 le1directed_set K2 le2directed_set (setprod K1 K2) (setprod_le K1 le1 K2 le2)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (subnet_preserves_convergence_witnessed)
∀X Tx net sub x J leJ K leK phi : set, topology_on X Txdirected_set J leJdirected_set K leKtotal_function_on net J Xfunctional_graph netgraph_domain_subset net Jtotal_function_on sub K Xfunctional_graph subgraph_domain_subset sub Ktotal_function_on phi K Jfunctional_graph phigraph_domain_subset phi K(∀i j : set, i Kj K(i,j) leK(apply_fun phi i,apply_fun phi j) leJ)(∀j : set, j J∃k : set, k K (j,apply_fun phi k) leJ)(∀k : set, k Kapply_fun sub k = apply_fun net (apply_fun phi k))x X(∀U : set, U Txx U∃j0 : set, j0 J ∀j : set, j J(j0,j) leJapply_fun net j U)net_converges X Tx sub x
Proof:
Proof not loaded.
Theorem. (subnet_preserves_convergence)
∀X Tx net sub x J leJ K leK phi : set, subnet_of_witness net sub J leJ K leK X phinet_converges_on X Tx net J leJ xnet_converges_on X Tx sub K leK x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define net_points_in to be λA net J ⇒ ∀j : set, j Japply_fun net j A of type setsetsetprop.
Definition. We define rev_inclusion_rel to be λJ ⇒ {psetprod J J|p 1 p 0} of type setset.
Proof:
Proof not loaded.
Theorem. (rev_inclusion_relE)
∀J a b : set, (a,b) rev_inclusion_rel J(a,b) setprod J J b a
Proof:
Proof not loaded.
Theorem. (rev_inclusion_relI)
∀J a b : set, (a,b) setprod J Jb a(a,b) rev_inclusion_rel J
Proof:
Proof not loaded.
Definition. We define inclusion_rel to be λJ ⇒ {psetprod J J|(p 0) (p 1)} of type setset.
Theorem. (inclusion_rel_def)
∀J : set, inclusion_rel J = {psetprod J J|(p 0) (p 1)}
Proof:
Proof not loaded.
Theorem. (inclusion_relE)
∀J a b : set, (a,b) inclusion_rel J(a,b) setprod J J a b
Proof:
Proof not loaded.
Theorem. (inclusion_relI)
∀J a b : set, (a,b) setprod J Ja b(a,b) inclusion_rel J
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define sequence_as_net to be λseq ⇒ graph ω (λn : setapply_fun seq n) of type setset.
Theorem. (sequence_as_net_in_space)
∀X seq : set, sequence_on seq Xnet_in_space X (sequence_as_net seq)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (converges_to_implies_net_converges_sequence_as_net)
∀X Tx seq x : set, converges_to X Tx seq xnet_converges X Tx (sequence_as_net seq) x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (closure_via_nets)
∀X Tx A x : set, topology_on X Tx(x closure_of X Tx A ∃net J le : set, net_converges_on X Tx net J le x net_points_in A net J)
Proof:
Proof not loaded.
Theorem. (continuity_via_nets)
∀X Tx Y Ty f : set, topology_on X Txtopology_on Y Ty(continuous_map X Tx Y Ty f ∀net J le x : set, net_converges_on X Tx net J le xnet_converges_on Y Ty (compose_fun J net f) J le (apply_fun f x))
Proof:
Proof not loaded.
Theorem. (subnet_converges_to_accumulation)
∀X Tx net x : set, accumulation_point_of_net X Tx net x∃sub : set, subnet_of net sub net_converges X Tx sub x
Proof:
Proof not loaded.
Theorem. (subnet_converges_to_accumulation_witnessed)
∀X Tx net x : set, accumulation_point_of_net X Tx net x∃J le K leK phi sub : set, subnet_of_witness net sub J le K leK X phi net_converges_on X Tx sub K leK x
Proof:
Proof not loaded.
Theorem. (subnet_converges_to_accumulation_witnessed_on)
∀X Tx net x J le : set, accumulation_point_of_net_on X Tx net J le x∃K leK phi sub : set, subnet_of_witness net sub J le K leK X phi net_converges_on X Tx sub K leK x
Proof:
Proof not loaded.
Theorem. (compact_space_net_has_accumulation_point)
∀X Tx net : set, compact_space X Txnet_in_space X net∃x0 : set, accumulation_point_of_net X Tx net x0
Proof:
Proof not loaded.
Theorem. (compact_space_net_has_accumulation_point_on)
∀X Tx net J le : set, compact_space X Txdirected_set J letotal_function_on net J Xfunctional_graph netgraph_domain_subset net J∃x0 : set, accumulation_point_of_net_on X Tx net J le x0
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (open_cover_no_finite_subcover_implies_net_counterexample)
∀X Tx Fam : set, topology_on X Txopen_cover_of X Tx Fam¬ (has_finite_subcover X Tx Fam)∃J le net0 : set, directed_set J le total_function_on net0 J X functional_graph net0 graph_domain_subset net0 J (∀sub K leK phi x : set, subnet_of_witness net0 sub J le K leK X phi¬ (net_converges_on X Tx sub K leK x))
Proof:
Proof not loaded.
Theorem. (open_cover_no_finite_subcover_implies_net_pack_counterexample)
∀X Tx Fam : set, topology_on X Txopen_cover_of X Tx Fam¬ (has_finite_subcover X Tx Fam)∃N : set, net_pack_in_space X N (∀S x : set, subnet_pack_of_in X N S¬ (net_pack_converges X Tx S x))
Proof:
Proof not loaded.
Theorem. (compact_space_implies_every_net_has_convergent_subnet)
∀X Tx : set, compact_space X Tx∀net : set, net_in_space X net∃sub x : set, subnet_of net sub net_converges X Tx sub x
Proof:
Proof not loaded.
Theorem. (compact_space_implies_every_net_pack_has_convergent_subnet_fun)
∀X Tx : set, compact_space X Tx∀N : set, net_pack_in_space X N∃sub x : set, subnet_of (net_pack_fun N) sub net_converges X Tx sub x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (compact_space_of_every_net_pack_has_convergent_subnet_pack)
∀X Tx : set, topology_on X Tx(∀N : set, net_pack_in_space X N∃S x : set, subnet_pack_of_in X N S net_pack_converges X Tx S x)compact_space X Tx
Proof:
Proof not loaded.
Theorem. (compact_iff_every_net_pack_has_convergent_subnet_pack)
∀X Tx : set, topology_on X Tx(compact_space X Tx ∀N : set, net_pack_in_space X N∃S x : set, subnet_pack_of_in X N S net_pack_converges X Tx S x)
Proof:
Proof not loaded.
Definition. We define countable_set to be λA ⇒ countable A of type setprop.
Proof:
Proof not loaded.
Theorem. (equip_countable_set_left)
∀X Y : set, equip X Ycountable_set Xcountable_set Y
Proof:
Proof not loaded.
Theorem. (equip_countable_set_right)
∀X Y : set, equip X Ycountable_set Ycountable_set X
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define countable_subcollection to be λV U ⇒ V U countable_set V of type setsetprop.
Definition. We define countable_index_set to be λI ⇒ countable_set I of type setprop.
Definition. We define countable_product_topology_subbasis to be λI Xi ⇒ generated_topology_from_subbasis (product_space I Xi) (product_subbasis_full I Xi) of type setsetset.
Theorem. (product_subbasis_full_subbasis_on)
∀I Xi : set, I Empty(∀i : set, i Itopology_on (space_family_set Xi i) (space_family_topology Xi i))subbasis_on (product_space I Xi) (product_subbasis_full I Xi)
Proof:
Proof not loaded.
Theorem. (setprod_Empty_left)
∀Y : set, setprod Empty Y = Empty
Proof:
Proof not loaded.
Theorem. (basis_on_singleton)
∀X : set, basis_on X {X}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (product_topology_full_is_topology)
∀I Xi : set, (∀i : set, i Itopology_on (space_family_set Xi i) (space_family_topology Xi i))topology_on (product_space I Xi) (product_topology_full I Xi)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (equip_Power_nat)
∀n : set, nat_p nequip (𝒫 n) (exp_nat 2 n)
Proof:
Proof not loaded.
Theorem. (countable_image)
∀X : set, countable_set X∀F : setset, countable_set {F x|xX}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define real_sequences to be {f𝒫 (setprod ω R)|total_function_on f ω R functional_graph f} of type set.
Theorem. (real_sequences_ext)
∀f g : set, f real_sequencesg real_sequences(∀n : set, n ωapply_fun f n = apply_fun g n)f = g
Proof:
Proof not loaded.
Theorem. (exists_metric_on)
∀X : set, ∃d : set, metric_on X d
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_coord_abs_diff to be λf g n ⇒ abs_SNo (add_SNo (apply_fun f n) (minus_SNo (apply_fun g n))) of type setsetsetset.
Definition. We define Romega_coord_clipped_diff to be λf g n ⇒ If_i (Rlt (Romega_coord_abs_diff f g n) 1) (Romega_coord_abs_diff f g n) 1 of type setsetsetset.
Definition. We define Romega_clipped_diffs to be λf g ⇒ Repl ω (λn : setRomega_coord_clipped_diff f g n) of type setsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_uniform_metric_value to be λf g ⇒ Eps_i (λr : setR_lub (Romega_clipped_diffs f g) r) of type setsetset.
Theorem. (Romega_clipped_diffs_in_R)
∀f g : set, f real_sequencesg real_sequences∀a : set, a Romega_clipped_diffs f ga R
Proof:
Proof not loaded.
Theorem. (Romega_clipped_diffs_bounded)
∀f g : set, f real_sequencesg real_sequences∃u : set, u R ∀a : set, a Romega_clipped_diffs f ga RRle a u
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define uniform_metric_Romega to be graph (setprod real_sequences real_sequences) (λp : setRomega_uniform_metric_value (p 0) (p 1)) of type set.
Proof:
Proof not loaded.
Definition. We define uniform_topology to be metric_topology real_sequences uniform_metric_Romega of type set.
Theorem. (Rle_of_SNoLe)
∀a b : set, a Rb Ra bRle a b
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_le1_of_ge1)
∀x : set, SNo x0 < x1 xrecip_SNo_pos x 1
Proof:
Proof not loaded.
Theorem. (recip_SNo_pos_in_unit_interval_of_ge1)
∀t : set, t RRle 1 tRlt 0 trecip_SNo_pos t unit_interval
Proof:
Proof not loaded.
Theorem. (abs_SNo_upper_bound)
∀x : set, SNo xx abs_SNo x
Proof:
Proof not loaded.
Theorem. (abs_SNo_lower_bound)
∀x : set, SNo xminus_SNo (abs_SNo x) x
Proof:
Proof not loaded.
Theorem. (abs_SNo_Le_of_bounds)
∀t u : set, SNo tSNo uminus_SNo u tt uabs_SNo t u
Proof:
Proof not loaded.
Theorem. (abs_SNo_subadd)
∀x y : set, SNo xSNo yabs_SNo (add_SNo x y) add_SNo (abs_SNo x) (abs_SNo y)
Proof:
Proof not loaded.
Theorem. (abs_SNo_triangle)
∀a b c : set, SNo aSNo bSNo cabs_SNo (add_SNo a (minus_SNo c)) add_SNo (abs_SNo (add_SNo a (minus_SNo b))) (abs_SNo (add_SNo b (minus_SNo c)))
Proof:
Proof not loaded.
Theorem. (SNo_If_i)
∀P : prop, ∀x y : set, SNo xSNo ySNo (If_i P x y)
Proof:
Proof not loaded.
Theorem. (Romega_coord_abs_diff_in_R)
∀f g n : set, f real_sequencesg real_sequencesn ωRomega_coord_abs_diff f g n R
Proof:
Proof not loaded.
Theorem. (Rclip_mono)
∀t s : set, t Rs Rt sIf_i (Rlt t 1) t 1 If_i (Rlt s 1) s 1
Proof:
Proof not loaded.
Theorem. (Rclip_subadd_nonneg)
∀p q : set, p Rq R0 p0 qIf_i (Rlt (add_SNo p q) 1) (add_SNo p q) 1 add_SNo (If_i (Rlt p 1) p 1) (If_i (Rlt q 1) q 1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_product_topology_on_real_sequences to be subspace_topology R_omega_space (product_topology_full ω (const_space_family ω R R_standard_topology)) real_sequences of type set.
Definition. We define Romega_box_topology_on_real_sequences to be subspace_topology R_omega_space (box_topology ω (const_space_family ω R R_standard_topology)) real_sequences of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define R_bounded_distance to be λa b ⇒ If_i (Rlt (abs_SNo (add_SNo a (minus_SNo b))) 1) (abs_SNo (add_SNo a (minus_SNo b))) 1 of type setsetset.
Definition. We define R_bounded_metric to be graph (setprod R R) (λp : setR_bounded_distance (p 0) (p 1)) of type set.
Theorem. (R_bounded_metric_apply_early)
∀x y : set, x Ry Rapply_fun R_bounded_metric (x,y) = R_bounded_distance x y
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_sym)
∀a b : set, a Rb RR_bounded_distance a b = R_bounded_distance b a
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_self_zero)
∀a : set, a RR_bounded_distance a a = 0
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_nonneg)
∀a b : set, a Rb R0 R_bounded_distance a b
Proof:
Proof not loaded.
Theorem. (SNo_pos_ne0)
∀x : set, SNo x0 < xx 0
Proof:
Proof not loaded.
Theorem. (abs_SNo_eq0)
∀x : set, SNo xabs_SNo x = 0x = 0
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_eq0)
∀a b : set, a Rb RR_bounded_distance a b = 0a = b
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_le_1)
∀a b : set, a Rb RRle (R_bounded_distance a b) 1
Proof:
Proof not loaded.
Theorem. (abs_SNo_in_R)
∀x : set, x Rabs_SNo x R
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_in_R)
∀a b : set, a Rb RR_bounded_distance a b R
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_triangle_Le)
∀a b c : set, a Rb Rc RR_bounded_distance a c add_SNo (R_bounded_distance a b) (R_bounded_distance b c)
Proof:
Proof not loaded.
Definition. We define Romega_D_scaled_diffs to be λx y ⇒ Repl ω (λi : setmul_SNo (R_bounded_distance (apply_fun x i) (apply_fun y i)) (inv_nat (ordsucc i))) of type setsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_D_metric_value to be λx y ⇒ Eps_i (λr : setR_lub (Romega_D_scaled_diffs x y) r) of type setsetset.
Theorem. (inv_nat_Rle_1)
∀n : set, n ω {0}Rle (inv_nat n) 1
Proof:
Proof not loaded.
Theorem. (Romega_D_scaled_diffs_in_R)
∀x y : set, x R_omega_spacey R_omega_space∀a : set, a Romega_D_scaled_diffs x ya R
Proof:
Proof not loaded.
Theorem. (Romega_D_scaled_diffs_bounded)
∀x y : set, x R_omega_spacey R_omega_space∃u : set, u R ∀a : set, a Romega_D_scaled_diffs x ya RRle a u
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Romega_D_metric_value_eq0_coord_eq)
∀x y : set, x R_omega_spacey R_omega_spaceRomega_D_metric_value x y = 0∀i : set, i ωapply_fun x i = apply_fun y i
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (R_bounded_distance_lt_lt1_imp_abs_lt)
∀a b r : set, a Rb Rr RRlt r 1Rlt (R_bounded_distance a b) rabs_SNo (add_SNo a (minus_SNo b)) < r
Proof:
Proof not loaded.
Theorem. (abs_lt_lt1_imp_R_bounded_distance_lt)
∀a b r : set, a Rb Rr RRlt r 1abs_SNo (add_SNo a (minus_SNo b)) < rRlt (R_bounded_distance a b) r
Proof:
Proof not loaded.
Theorem. (Romega_D_metric_coord_abs_lt)
∀x y i delta : set, x R_omega_spacey R_omega_spacei ωdelta RRlt 0 deltaRlt delta 1Rlt (Romega_D_metric_value x y) (mul_SNo delta (inv_nat (ordsucc i)))abs_SNo (add_SNo (apply_fun x i) (minus_SNo (apply_fun y i))) < delta
Proof:
Proof not loaded.
Theorem. (div_SNo_1_eq_inv_nat)
∀n : set, SNo ndiv_SNo 1 n = inv_nat n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (inv_nat_ordsucc_antitone)
∀i j : set, i ωj ωi jRlt (inv_nat (ordsucc j)) (inv_nat (ordsucc i))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (exists_inv_nat_ordsucc_lt)
∀r : set, r RRlt 0 r∃N : set, N ω Rlt (inv_nat (ordsucc N)) r
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Romega_D_metric to be graph (setprod R_omega_space R_omega_space) (λp : setRomega_D_metric_value (p 0) (p 1)) of type set.
Proof:
Proof not loaded.
Definition. We define Romega_D_metric_topology to be metric_topology R_omega_space Romega_D_metric of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define open_cover to be λX Tx U ⇒ (∀u : set, u Uu Tx) covers X U of type setsetsetprop.
Theorem. (open_cover_members_open)
∀X Tx U u : set, open_cover X Tx Uu Uu Tx
Proof:
Proof not loaded.
Theorem. (open_cover_implies_covers)
∀X Tx U : set, open_cover X Tx Ucovers X U
Proof:
Proof not loaded.
Theorem. (open_cover_of_implies_open_cover)
∀X Tx Fam : set, open_cover_of X Tx Famopen_cover X Tx Fam
Proof:
Proof not loaded.
Theorem. (open_cover_family_sub)
∀X Tx U : set, topology_on X Txopen_cover X Tx UU 𝒫 X
Proof:
Proof not loaded.
Theorem. (open_cover_implies_open_cover_of)
∀X Tx Fam : set, topology_on X Txopen_cover X Tx Famopen_cover_of X Tx Fam
Proof:
Proof not loaded.
Definition. We define Lindelof_space to be λX Tx ⇒ topology_on X Tx ∀U : set, open_cover X Tx U∃V : set, countable_subcollection V U covers X V of type setsetprop.
Theorem. (countable_space_implies_Lindelof_space)
∀X Tx : set, topology_on X Txcountable XLindelof_space X Tx
Proof:
Proof not loaded.
Theorem. (compact_space_implies_Lindelof_space)
∀X Tx : set, compact_space X TxLindelof_space X Tx
Proof:
Proof not loaded.
Definition. We define Sorgenfrey_line to be R of type set.
Definition. We define Sorgenfrey_topology to be R_lower_limit_topology of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define countable_basis_at to be λX Tx x ⇒ topology_on X Tx x X ∃B : set, B Tx countable_set B (∀b : set, b Bx b) (∀U : set, U Txx U∃b : set, b B b U) of type setsetsetprop.
Definition. We define first_countable_space to be λX Tx ⇒ topology_on X Tx ∀x : set, x Xcountable_basis_at X Tx x of type setsetprop.
Theorem. (open_ball_radius_mono)
∀X d x r1 r2 : set, Rlt r1 r2open_ball X d x r1 open_ball X d x r2
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (convergent_sequence_implies_closure)
∀X Tx A x : set, topology_on X TxA X(∃seq : set, sequence_in seq A converges_to X Tx seq x)x closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (equip_finite_transfer)
∀X Y : set, equip X Yfinite Yfinite X
Proof:
Proof not loaded.
Theorem. (inj_equip_image)
∀X Y : set, ∀f : setset, inj X Y fequip X {f x|xX}
Proof:
Proof not loaded.
Theorem. (inj_into_finite_nat)
∀X n : set, ∀f : setset, nat_p ninj X n ffinite X
Proof:
Proof not loaded.
Theorem. (first_countable_sequences_detect_closure)
∀X Tx A x : set, first_countable_space X TxA X(x closure_of X Tx A ∃seq : set, sequence_in seq A converges_to X Tx seq x)
Proof:
Proof not loaded.
Theorem. (first_countable_sequences_detect_continuity)
∀X Tx Y Ty f : set, topology_on X Txtopology_on Y Ty(continuous_map X Tx Y Ty f∀x seq : set, sequence_on seq Xconverges_to X Tx seq xconverges_to Y Ty (map_sequence f seq) (apply_fun f x))
Proof:
Proof not loaded.
Definition. We define second_countable_space to be λX Tx ⇒ topology_on X Tx ∃B : set, basis_on X B countable_set B basis_generates X B Tx of type setsetprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define discrete_subspace to be λX Tx A ⇒ A X (∀a : set, a A∃U : set, U Tx U A = {a}) of type setsetsetprop.
Proof:
Proof not loaded.
Definition. We define binary_sequences_Romega to be {freal_sequences|∀n : set, n ωapply_fun f n {0,1}} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (real_sequences_neq_exists_coord)
∀f g : set, f real_sequencesg real_sequencesf g∃n : set, n ω apply_fun f n apply_fun g n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define dense_in to be λA X Tx ⇒ closure_of X Tx A = X of type setsetsetprop.
Theorem. (dense_in_superset)
∀A B X Tx : set, topology_on X TxA BB Xdense_in A X Txdense_in B X Tx
Proof:
Proof not loaded.
Theorem. (countable_basis_implies_Lindelof)
∀X Tx : set, topology_on X Txsecond_countable_space X Tx∀U : set, open_cover X Tx U∃V : set, countable_subcollection V U covers X V
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (countable_basis_implies_separable)
∀X Tx : set, topology_on X Txsecond_countable_space X Tx∃D : set, countable_set D dense_in D X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (disjoint_open_family_countable_of_dense)
∀X Tx D Fam : set, topology_on X Txdense_in D X Txcountable_set DFam Tx(∀U : set, U FamU Empty)pairwise_disjoint Famcountable_set Fam
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Sorgenfrey_plane_topology to be product_topology Sorgenfrey_line Sorgenfrey_topology Sorgenfrey_line Sorgenfrey_topology of type set.
Definition. We define Sorgenfrey_plane_rational_points to be setprod rational_numbers rational_numbers of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define one_point_sets_closed to be λX Tx ⇒ topology_on X Tx ∀x : set, x Xclosed_in X Tx {x} of type setsetprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define regular_space to be λX Tx ⇒ one_point_sets_closed X Tx ∀x : set, x X∀F : set, closed_in X Tx Fx F∃U V : set, U Tx V Tx x U F V U V = Empty of type setsetprop.
Definition. We define normal_space to be λX Tx ⇒ one_point_sets_closed X Tx ∀A B : set, closed_in X Tx Aclosed_in X Tx BA B = Empty∃U V : set, U Tx V Tx A U B V U V = Empty of type setsetprop.
Theorem. (normal_space_topology_on)
∀X Tx : set, normal_space X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (regular_space_topology_on)
∀X Tx : set, regular_space X Txtopology_on X Tx
Proof:
Proof not loaded.
Theorem. (regular_space_open_nbhd_closure_sub)
∀X Tx U x : set, regular_space X TxU Txx U∃V : set, V Tx x V closure_of X Tx V U
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (regular_space_implies_Hausdorff)
∀X Tx : set, regular_space X TxHausdorff_space X Tx
Proof:
Proof not loaded.
Theorem. (normal_space_implies_regular)
∀X Tx : set, normal_space X Txregular_space X Tx
Proof:
Proof not loaded.
Definition. We define Hausdorff_spaces_family to be λI Xi ⇒ ∀i : set, i IHausdorff_space (product_component Xi i) (product_component_topology Xi i) of type setsetprop.
Definition. We define regular_spaces_family to be λI Xi ⇒ ∀i : set, i Iregular_space (product_component Xi i) (product_component_topology Xi i) of type setsetprop.
Definition. We define uncountable_set to be λX ⇒ ¬ countable_set X of type setprop.
Theorem. (uncountable_set_ne_Empty)
∀X : set, uncountable_set XX Empty
Proof:
Proof not loaded.
Definition. We define countable_subsets_bounded to be λX ⇒ ∀A : set, A Xcountable_set A∃b : set, b X ∀a : set, a Aa b of type setprop.
Theorem. (mem_implies_order_rel_well_ordered)
∀X a b : set, well_ordered_set Xa border_rel X a b
Proof:
Proof not loaded.
Theorem. (order_rel_well_ordered_implies_mem)
∀X a b : set, well_ordered_set Xorder_rel X a ba b
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define separating_family_of_functions to be λX Tx F J ⇒ topology_on X Tx total_function_on F J (function_space X R) (∀j : set, j Jcontinuous_map X Tx R R_standard_topology (apply_fun F j)) (∀x0 : set, x0 X∀U : set, U Txx0 U∃j : set, j J Rlt 0 (apply_fun (apply_fun F j) x0) ∀x : set, x X Uapply_fun (apply_fun F j) x = 0) of type setsetsetsetprop.
Theorem. (separating_family_of_functions_separates_points)
∀X Tx F J x y : set, topology_on X Txone_point_sets_closed X Txseparating_family_of_functions X Tx F Jx Xy Xx y∃j : set, j J apply_fun (apply_fun F j) x apply_fun (apply_fun F j) y
Proof:
Proof not loaded.
Definition. We define diagonal_map to be λX F J ⇒ graph X (λx : setgraph J (λj : setapply_fun (apply_fun F j) x)) of type setsetsetset.
Theorem. (diagonal_map_coord_apply)
∀X F J x i : set, x Xi Japply_fun (apply_fun (diagonal_map X F J) x) i = apply_fun (apply_fun F i) x
Proof:
Proof not loaded.
Definition. We define embedding_of to be λX Tx Y Ty f ⇒ continuous_map X Tx Y Ty f homeomorphism X Tx (image_of f X) (subspace_topology Y Ty (image_of f X)) f of type setsetsetsetsetprop.
Theorem. (embedding_of_continuous)
∀X Tx Y Ty f : set, embedding_of X Tx Y Ty fcontinuous_map X Tx Y Ty f
Proof:
Proof not loaded.
Theorem. (embedding_of_homeomorphism)
∀X Tx Y Ty f : set, embedding_of X Tx Y Ty fhomeomorphism X Tx (image_of f X) (subspace_topology Y Ty (image_of f X)) f
Proof:
Proof not loaded.
Theorem. (embedding_of_from_local_refinement)
∀X Tx Y Ty f : set, continuous_map X Tx Y Ty f(∀x U : set, x XU Txx U∃V : set, V Ty apply_fun f x V preimage_of X f V U)(∀x y : set, x Xy Xapply_fun f x = apply_fun f yx = y)embedding_of X Tx Y Ty f
Proof:
Proof not loaded.
Definition. We define power_real to be λJ ⇒ product_space J (const_space_family J R R_standard_topology) of type setset.
Definition. We define unit_interval_power to be λJ ⇒ product_space J (const_space_family J unit_interval unit_interval_topology) of type setset.
Definition. We define power_real_coord_abs_diff to be λf g j ⇒ abs_SNo (add_SNo (apply_fun f j) (minus_SNo (apply_fun g j))) of type setsetsetset.
Definition. We define power_real_coord_clipped_diff to be λf g j ⇒ If_i (Rlt (power_real_coord_abs_diff f g j) 1) (power_real_coord_abs_diff f g j) 1 of type setsetsetset.
Definition. We define power_real_clipped_diffs to be λJ f g ⇒ Repl J (λj : setpower_real_coord_clipped_diff f g j) of type setsetsetset.
Definition. We define power_real_uniform_metric_value to be λJ f g ⇒ If_i (J = Empty) 0 (Eps_i (λr : setR_lub (power_real_clipped_diffs J f g) r)) of type setsetsetset.
Definition. We define uniform_metric_power_real to be λJ ⇒ graph (setprod (power_real J) (power_real J)) (λp : setpower_real_uniform_metric_value J (p 0) (p 1)) of type setset.
Definition. We define uniform_topology_power_real to be λJ ⇒ metric_topology (power_real J) (uniform_metric_power_real J) of type setset.
Proof:
Proof not loaded.
Theorem. (power_real_coord_in_R)
∀J f j : set, j Jf power_real Japply_fun f j R
Proof:
Proof not loaded.
Theorem. (power_real_ext)
∀J f g : set, f power_real Jg power_real J(∀j : set, j Japply_fun f j = apply_fun g j)f = g
Proof:
Proof not loaded.
Theorem. (power_real_clipped_diffs_in_R)
∀J f g a : set, f power_real Jg power_real Ja power_real_clipped_diffs J f ga R
Proof:
Proof not loaded.
Theorem. (power_real_coord_clipped_diff_le_1)
∀J f g j : set, j Jf power_real Jg power_real JRle (power_real_coord_clipped_diff f g j) 1
Proof:
Proof not loaded.
Theorem. (power_real_clipped_diffs_nonempty)
∀J f g : set, J Emptyf power_real Jg power_real J∃a0 : set, a0 power_real_clipped_diffs J f g
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (power_real_uniform_metric_value_eq0_coord_eq)
∀J x y j : set, J Emptyx power_real Jy power_real Jj Jpower_real_uniform_metric_value J x y = 0apply_fun x j = apply_fun y j
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define one_minus_fun to be graph R (λt : setadd_SNo 1 (minus_SNo t)) of type set.
Theorem. (one_minus_fun_value_in_R)
∀t : set, t Rapply_fun one_minus_fun t R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define neg_fun to be graph R (λt : setminus_SNo t) of type set.
Theorem. (neg_fun_value_in_R)
∀t : set, t Rapply_fun neg_fun t R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (neg_fun_apply)
∀t : set, t Rapply_fun neg_fun t = minus_SNo t
Proof:
Proof not loaded.
Theorem. (minus_SNo_minus_SNo_R)
∀t : set, t Rminus_SNo (minus_SNo t) = t
Proof:
Proof not loaded.
Theorem. (neg_fun_flip_upper)
∀a t : set, a Rt R(Rlt a (minus_SNo t) Rlt t (minus_SNo a))
Proof:
Proof not loaded.
Theorem. (neg_fun_flip_lower)
∀t b : set, t Rb R(Rlt (minus_SNo t) b Rlt (minus_SNo b) t)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define add_fun_R to be graph (setprod R R) (λp : setadd_SNo (p 0) (p 1)) of type set.
Definition. We define mul_fun_R to be graph (setprod R R) (λp : setmul_SNo (p 0) (p 1)) of type set.
Definition. We define mul_const_fun to be λc ⇒ graph R (λt : setmul_SNo t c) of type setset.
Theorem. (add_fun_R_value_in_R)
∀p : set, p setprod R Rapply_fun add_fun_R p R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (add_fun_R_apply)
∀p : set, p setprod R Rapply_fun add_fun_R p = add_SNo (p 0) (p 1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define normalize01_fun to be graph R (λt : setdiv_SNo (mul_SNo t t) (add_SNo (mul_SNo t t) (mul_SNo (add_SNo t (minus_SNo 1)) (add_SNo t (minus_SNo 1))))) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (normalize01_fun_den_pos)
∀t : set, t R0 < add_SNo (mul_SNo t t) (mul_SNo (add_SNo t (minus_SNo 1)) (add_SNo t (minus_SNo 1)))
Proof:
Proof not loaded.
Theorem. (normalize01_fun_pos_of_neq0)
∀t : set, t Rt 0Rlt 0 (apply_fun normalize01_fun t)
Proof:
Proof not loaded.
Theorem. (normalize01_fun_lt1_of_neq1)
∀t : set, t Rt 1Rlt (apply_fun normalize01_fun t) 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (normalize01_fun_gt_iff_mul_den_lt_num)
∀a t : set, a Rt R0 < aa < 1(a < apply_fun normalize01_fun t mul_SNo a (add_SNo (mul_SNo t t) (mul_SNo (add_SNo t (minus_SNo 1)) (add_SNo t (minus_SNo 1)))) < (mul_SNo t t))
Proof:
Proof not loaded.
Theorem. (normalize01_fun_lt_iff_num_lt_mul_den)
∀b t : set, b Rt R0 < b(apply_fun normalize01_fun t < b (mul_SNo t t) < mul_SNo b (add_SNo (mul_SNo t t) (mul_SNo (add_SNo t (minus_SNo 1)) (add_SNo t (minus_SNo 1)))))
Proof:
Proof not loaded.
Theorem. (open_ball_R_bounded_metric_abs_early)
∀x r y : set, x Rr RRlt 0 rRlt r 1(y open_ball R R_bounded_metric x r (y R Rlt (R_bounded_distance x y) r))
Proof:
Proof not loaded.
Theorem. (open_ball_R_bounded_metric_absdiff_lt)
∀x r y : set, x Rr RRlt 0 rRlt r 1y open_ball R R_bounded_metric x rabs_SNo (add_SNo x (minus_SNo y)) < r
Proof:
Proof not loaded.
Theorem. (open_ball_R_bounded_metric_eq_R_if_1_lt_early)
∀c r : set, c Rr RRlt 1 ropen_ball R R_bounded_metric c r = R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (mul_const_fun_apply)
∀c t : set, c Rt Rapply_fun (mul_const_fun c) t = mul_SNo t c
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (mul_const_fun_value_in_R)
∀c t : set, c Rt Rapply_fun (mul_const_fun c) t R
Proof:
Proof not loaded.
Theorem. (preimage_mul_const_open_ray_upper)
∀c a : set, c R0 < ca Rpreimage_of R (mul_const_fun c) (open_ray_upper R a) = open_ray_upper R (div_SNo a c)
Proof:
Proof not loaded.
Theorem. (preimage_mul_const_open_ray_lower)
∀c b : set, c R0 < cb Rpreimage_of R (mul_const_fun c) (open_ray_lower R b) = open_ray_lower R (div_SNo b c)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (mul_fun_R_value_in_R)
∀p : set, p setprod R Rapply_fun mul_fun_R p R
Proof:
Proof not loaded.
Theorem. (mul_fun_R_apply)
∀p : set, p setprod R Rapply_fun mul_fun_R p = mul_SNo (p 0) (p 1)
Proof:
Proof not loaded.
Theorem. (abs_SNo_mul_nonneg_left)
∀x y : set, SNo xSNo y0 xabs_SNo (mul_SNo x y) = mul_SNo x (abs_SNo y)
Proof:
Proof not loaded.
Theorem. (abs_SNo_mul_eq)
∀x y : set, SNo xSNo yabs_SNo (mul_SNo x y) = mul_SNo (abs_SNo x) (abs_SNo y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (add_of_pair_map_apply)
∀A f g a : set, a Aapply_fun f a Rapply_fun g a Rapply_fun (compose_fun A (pair_map A f g) add_fun_R) a = add_SNo (apply_fun f a) (apply_fun g a)
Proof:
Proof not loaded.
Theorem. (mul_of_pair_map_apply)
∀A f g a : set, a Aapply_fun f a Rapply_fun g a Rapply_fun (compose_fun A (pair_map A f g) mul_fun_R) a = mul_SNo (apply_fun f a) (apply_fun g a)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (graph_to_R_in_power_real)
∀J : set, ∀g : setset, (∀j : set, j Jg j R)graph J g power_real J
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (graph_to_unit_interval_in_unit_interval_power)
∀J : set, ∀g : setset, (∀j : set, j Jg j unit_interval)graph J g unit_interval_power J
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define metrizable to be λX Tx ⇒ ∃d : set, metric_on X d metric_topology X d = Tx of type setsetprop.
Proof:
Proof not loaded.
Definition. We define Sorgenfrey_plane_L to be {(x,minus_SNo x)|xSorgenfrey_line} of type set.
Definition. We define Sorgenfrey_plane_special_rectangle to be λa b d ⇒ rectangle_set (halfopen_interval_left a b) (halfopen_interval_left (minus_SNo a) d) of type setsetsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Sorgenfrey_plane_special_rectangle_L_point)
∀a b d x : set, a Rb Rd Rx R(x,minus_SNo x) Sorgenfrey_plane_special_rectangle a b dx = a
Proof:
Proof not loaded.
Theorem. (tuple_2_ext)
∀a b c d : set, a = cb = d(a,b) = (c,d)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Axiom. (ordered_square_Lindelof) We take the following as an axiom:
Proof:
Proof not loaded.
Axiom. (ordered_square_open_strip_not_Lindelof) We take the following as an axiom:
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (regular_normal_via_closure)
∀X Tx : set, topology_on X Tx(one_point_sets_closed X Tx(regular_space X Tx ∀x U : set, x XU Txx U∃V : set, V Tx x V closure_of X Tx V U)) (one_point_sets_closed X Tx(normal_space X Tx ∀A U : set, closed_in X Tx AU TxA U∃V : set, V Tx A V closure_of X Tx V U))
Proof:
Proof not loaded.
Theorem. (regular_space_shrink_neighborhood)
∀X Tx x U : set, regular_space X Txx XU Txx U∃V : set, V Tx x V closure_of X Tx V U
Proof:
Proof not loaded.
Theorem. (normal_space_shrink_closed)
∀X Tx A U : set, normal_space X Txclosed_in X Tx AU TxA U∃V : set, V Tx A V closure_of X Tx V U
Proof:
Proof not loaded.
Theorem. (normal_space_shrink_closed_cover2)
∀X Tx A U V : set, normal_space X Txclosed_in X Tx AU TxV TxA U V∃U0 : set, U0 Tx (A V) U0 closure_of X Tx U0 U (A U0) V
Proof:
Proof not loaded.
Theorem. (product_topology_regular)
∀X Tx Y Ty : set, regular_space X Txregular_space Y Tyregular_space (setprod X Y) (product_topology X Tx Y Ty)
Proof:
Proof not loaded.
Theorem. (product_space_points_differ_coord)
∀I Xi x1 x2 : set, x1 product_space I Xix2 product_space I Xix1 x2∃i : set, i I apply_fun x1 i apply_fun x2 i
Proof:
Proof not loaded.
Theorem. (closure_of_product_cylinder_sub)
∀I Xi i V U : set, I Empty(∀j : set, j Itopology_on (space_family_set Xi j) (space_family_topology Xi j))i IV space_family_topology Xi iU space_family_topology Xi iclosure_of (space_family_set Xi i) (space_family_topology Xi i) V Uclosure_of (product_space I Xi) (product_topology_full I Xi) (product_cylinder I Xi i V) product_cylinder I Xi i U
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (separation_axioms_subspace_product)
∀X Tx : set, topology_on X Tx(∀Y : set, Y XHausdorff_space X TxHausdorff_space Y (subspace_topology X Tx Y)) (∀I Xi : set, Hausdorff_spaces_family I XiHausdorff_space (product_space I Xi) (product_topology_full I Xi)) (∀Y : set, Y Xregular_space X Txregular_space Y (subspace_topology X Tx Y)) (∀I Xi : set, regular_spaces_family I Xiregular_space (product_space I Xi) (product_topology_full I Xi))
Proof:
Proof not loaded.
Definition. We define R_K to be R of type set.
Theorem. (K_set_point_has_nonK_neighbor_in_intersection)
∀a b c d y : set, a Rb Rc Rd Ry K_sety open_interval a by open_interval c d∃z : set, z (open_interval a b open_interval c d) z K_set
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Sorgenfrey_plane_diag_rational to be {(x,minus_SNo x)|xrational_numbers} of type set.
Definition. We define Sorgenfrey_plane_diag_irrational to be {(x,minus_SNo x)|x(Sorgenfrey_line rational_numbers)} of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (inj_Power_image)
∀A B : set, ∀f : setset, inj A B finj (𝒫 A) (𝒫 B) (λS : set{f x|xS})
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (inj_omega_preimage_ordsucc_finite)
∀A n : set, ∀f : setset, nat_p ninj A ω ffinite {aA|f a ordsucc n}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Union_binunion_singleton_eq)
∀F y : set, (F {y}) = ( F) y
Proof:
Proof not loaded.
Theorem. (finite_union_closed_in)
∀X Tx F : set, topology_on X Txfinite F(∀C : set, C Fclosed_in X Tx C)closed_in X Tx ( F)
Proof:
Proof not loaded.
Theorem. (regular_countable_basis_normal)
∀X Tx : set, regular_space X Txsecond_countable_space X Txnormal_space X Tx
Proof:
Proof not loaded.
Definition. We define order_interval_right_closed to be λX x y ⇒ {zX|order_rel X x z (z = y order_rel X z y)} of type setsetsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_topology_local_basis_elem)
∀X U y : set, simply_ordered_set XU order_topology Xy U∃border_topology_basis X, y b b U
Proof:
Proof not loaded.
Theorem. (well_ordered_sets_normal_case_nonzero)
∀X A B UB VA : set, well_ordered_set Xsimply_ordered_set Xtopology_on X (order_topology X)closed_in X (order_topology X) Aclosed_in X (order_topology X) BA B = EmptyA EmptyB EmptyUB order_topology XB = X UBVA order_topology XA = X VA¬ (0 A)¬ (0 B)∃U V : set, U order_topology X V order_topology X A U B V U V = Empty
Proof:
Proof not loaded.
Theorem. (well_ordered_sets_normal_case_0_in_A)
∀X A B : set, well_ordered_set Xsimply_ordered_set Xclosed_in X (order_topology X) Aclosed_in X (order_topology X) BA B = EmptyA EmptyB Empty0 A∃U V : set, U order_topology X V order_topology X A U B V U V = Empty
Proof:
Proof not loaded.
Theorem. (well_ordered_sets_normal_case_0_in_B)
∀X A B : set, well_ordered_set Xsimply_ordered_set Xclosed_in X (order_topology X) Aclosed_in X (order_topology X) BA B = EmptyA EmptyB Empty0 B∃U V : set, U order_topology X V order_topology X A U B V U V = Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define metric_sup_neg_dists to be λX d x A ⇒ Eps_i (λl : setR_lub (metric_neg_dists X d x A) l) of type setsetsetsetset.
Theorem. (metric_sup_neg_dists_is_lub)
∀X d x A : set, metric_on X dx XA XA EmptyR_lub (metric_neg_dists X d x A) (metric_sup_neg_dists X d x A)
Proof:
Proof not loaded.
Definition. We define metric_dist_to_set to be λX d x A ⇒ minus_SNo (metric_sup_neg_dists X d x A) of type setsetsetsetset.
Theorem. (metric_dist_to_set_in_R)
∀X d x A : set, metric_on X dx XA XA Emptymetric_dist_to_set X d x A R
Proof:
Proof not loaded.
Theorem. (metric_dist_to_set_eq_0_if_mem)
∀X d x A : set, metric_on X dx XA Xx Ametric_dist_to_set X d x A = 0
Proof:
Proof not loaded.
Theorem. (minus_SNo_minus_SNo_real)
∀t : set, t Rminus_SNo (minus_SNo t) = t
Proof:
Proof not loaded.
Theorem. (metric_dist_to_set_le_dist)
∀X d x A a : set, metric_on X dx XA XA Emptya ARle (metric_dist_to_set X d x A) (apply_fun d (x,a))
Proof:
Proof not loaded.
Theorem. (metric_dist_to_set_approx)
∀X d x A eps : set, metric_on X dx XA XA Emptyeps RRlt 0 eps∃a : set, a A a X Rlt (apply_fun d (x,a)) (add_SNo (metric_dist_to_set X d x A) eps)
Proof:
Proof not loaded.
Theorem. (metric_dist_to_set_Lipschitz)
∀X d x y A : set, metric_on X dx Xy XA XA EmptyRle (metric_dist_to_set X d y A) (add_SNo (metric_dist_to_set X d x A) (apply_fun d (x,y)))
Proof:
Proof not loaded.
Theorem. (metric_dist_to_closed_set_pos_if_not_mem)
∀X d B x : set, metric_on X dclosed_in X (metric_topology X d) Bx Xx BB EmptyRlt 0 (metric_dist_to_set X d x B)
Proof:
Proof not loaded.
Theorem. (metrizable_spaces_normal)
∀X d : set, metric_on X dnormal_space X (metric_topology X d)
Proof:
Proof not loaded.
Theorem. (compact_Hausdorff_normal)
∀X Tx : set, compact_space X TxHausdorff_space X Txnormal_space X Tx
Proof:
Proof not loaded.
Axiom. (uncountable_product_R_not_normal) We take the following as an axiom:
Axiom. (exists_uncountable_well_ordered_set) We take the following as an axiom:
Theorem. (exists_uncountable_ordinal)
∃alpha : set, ordinal alpha uncountable_set alpha
Proof:
Proof not loaded.
Definition. We define S_Omega to be Eps_i (λX : setwell_ordered_set X uncountable_set X countable_subsets_bounded X) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (S_Omega_omega_family_has_upper_bound)
∀seq : set, function_on seq ω S_Omega∃b : set, b S_Omega ∀n : set, n ωapply_fun seq n b
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Sbar_Omega to be SetAdjoin S_Omega S_Omega of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define SOmega_topology to be order_topology S_Omega of type set.
Definition. We define SbarOmega_topology to be order_topology Sbar_Omega of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define closed_interval to be λa b ⇒ {xR|¬ (Rlt x a) ¬ (Rlt b x)} of type setsetset.
Definition. We define closed_interval_topology to be λa b ⇒ subspace_topology R R_standard_topology (closed_interval a b) of type setsetset.
Theorem. (closed_interval_sub_R)
∀a b : set, closed_interval a b R
Proof:
Proof not loaded.
Theorem. (closed_interval_bounds)
∀a b x : set, a Rb Rx closed_interval a bRle a x Rle x b
Proof:
Proof not loaded.
Theorem. (closed_intervalI_of_Rle)
∀a b x : set, a Rb Rx RRle a xRle x bx closed_interval a b
Proof:
Proof not loaded.
Theorem. (closed_interval_not_mem_cases)
∀a b x : set, a Rb Rx Rx closed_interval a bRlt x a Rlt b x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (left_endpoint_in_closed_interval)
∀a b : set, Rle a ba closed_interval a b
Proof:
Proof not loaded.
Theorem. (right_endpoint_in_closed_interval)
∀a b : set, Rle a bb closed_interval a b
Proof:
Proof not loaded.
Theorem. (closed_interval_degenerate)
∀a y : set, a Ry closed_interval a ay = a
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (normal_extend_nested_open_family_by_point)
∀X Tx : set, normal_space X Tx∀F : set, finite FF R∀Uof : setset, (∀p : set, p FUof p Tx)(∀p q : set, p Fq FRlt p qclosure_of X Tx (Uof p) Uof q)∀r : set, r R∃Ur : set, Ur Tx (∀p : set, p FRlt p rclosure_of X Tx (Uof p) Ur) (∀q : set, q FRlt r qclosure_of X Tx Ur Uof q)
Proof:
Proof not loaded.
Theorem. (Urysohn_lemma)
∀X Tx A B a b : set, Rle a bnormal_space X Txclosed_in X Tx Aclosed_in X Tx BA B = Empty∃f : set, continuous_map X Tx (closed_interval a b) (closed_interval_topology a b) f (∀x : set, x Aapply_fun f x = a) (∀x : set, x Bapply_fun f x = b)
Proof:
Proof not loaded.
Definition. We define completely_regular_space to be λX Tx ⇒ topology_on X Tx (one_point_sets_closed X Tx ∀x : set, x X∀F : set, closed_in X Tx Fx F∃f : set, continuous_map X Tx R R_standard_topology f apply_fun f x = 0 ∀y : set, y Fapply_fun f y = 1) of type setsetprop.
Theorem. (completely_regular_space_open_separator)
∀X Tx x U : set, completely_regular_space X Txx XU Txx U∃g : set, continuous_map X Tx R R_standard_topology g apply_fun g x = 1 ∀y : set, y X Uapply_fun g y = 0
Proof:
Proof not loaded.
Theorem. (completely_regular_space_open_separator_unit_interval)
∀X Tx x U : set, completely_regular_space X Txx XU Txx U∃h : set, continuous_map X Tx unit_interval unit_interval_topology h apply_fun h x = 1 ∀y : set, y X Uapply_fun h y = 0
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (completely_regular_space_separates_points)
∀X Tx x y : set, completely_regular_space X Txx Xy Xx y∃f : set, continuous_map X Tx R R_standard_topology f apply_fun f x = 0 apply_fun f y = 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (completely_regular_space_separation)
∀X Tx x F : set, completely_regular_space X Txx Xclosed_in X Tx Fx F∃f : set, continuous_map X Tx R R_standard_topology f apply_fun f x = 0 ∀y : set, y Fapply_fun f y = 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define completely_regular_spaces_family to be λI Xi ⇒ ∀i : set, i Icompletely_regular_space (product_component Xi i) (product_component_topology Xi i) of type setsetprop.
Theorem. (continuous_from_discrete)
∀X Y Ty f : set, topology_on Y Tyfunction_on f X Ycontinuous_map X (discrete_topology X) Y Ty f
Proof:
Proof not loaded.
Theorem. (tuple_2_0_congr)
∀a b c d : set, (a,b) = (c,d)a = c
Proof:
Proof not loaded.
Theorem. (tuple_2_1_congr)
∀a b c d : set, (a,b) = (c,d)b = d
Proof:
Proof not loaded.
Theorem. (const_fun_pair_first)
∀A x a y : set, (a,y) const_fun A xa A
Proof:
Proof not loaded.
Theorem. (const_fun_pair_second)
∀A x a y : set, (a,y) const_fun A xy = x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Tychonoff_space to be λX Tx ⇒ completely_regular_space X Tx Hausdorff_space X Tx of type setsetprop.
Theorem. (generated_topology_from_subbasis_local_basis)
∀X S U x : set, U generated_topology_from_subbasis X Sx U∃b : set, b basis_of_subbasis X S x b b U
Proof:
Proof not loaded.
Theorem. (basis_of_subbasisE)
∀X S b : set, b basis_of_subbasis X S∃F : set, F finite_subcollections S b = intersection_of_family X F b Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define product_eval_map to be λI Xi i ⇒ graph (product_space I Xi) (λf : setapply_fun f i) of type setsetsetset.
Theorem. (product_eval_map_continuous)
∀I Xi i : set, (∀j : set, j Itopology_on (space_family_set Xi j) (space_family_topology Xi j))i Icontinuous_map (product_space I Xi) (product_topology_full I Xi) (space_family_set Xi i) (space_family_topology Xi i) (product_eval_map I Xi i)
Proof:
Proof not loaded.
Theorem. (net_converges_on_product_topology_full_implies_coord_converges)
∀I Xi net J le x i : set, (∀j : set, j Itopology_on (space_family_set Xi j) (space_family_topology Xi j))i Inet_converges_on (product_space I Xi) (product_topology_full I Xi) net J le xnet_converges_on (space_family_set Xi i) (space_family_topology Xi i) (compose_fun J net (product_eval_map I Xi i)) J le (apply_fun x i)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (net_converges_on_generated_topology_from_subbasis_of_subeventual)
∀X S net J le x : set, subbasis_on X Sdirected_set J letotal_function_on net J Xfunctional_graph netgraph_domain_subset net Jx X(∀s : set, s Sx s∃i0 : set, i0 J ∀i : set, i J(i0,i) leapply_fun net i s)net_converges_on X (generated_topology_from_subbasis X S) net J le x
Proof:
Proof not loaded.
Theorem. (product_subbasis_fullE)
∀I Xi s : set, s product_subbasis_full I Xi∃i : set, i I ∃U : set, U space_family_topology Xi i s = product_cylinder I Xi i U
Proof:
Proof not loaded.
Theorem. (net_converges_on_product_topology_full_of_all_coord_converge)
∀I Xi net J le x : set, I Empty(∀i : set, i Itopology_on (space_family_set Xi i) (space_family_topology Xi i))directed_set J letotal_function_on net J (product_space I Xi)functional_graph netgraph_domain_subset net Jx product_space I Xi(∀i : set, i Inet_converges_on (space_family_set Xi i) (space_family_topology Xi i) (compose_fun J net (product_eval_map I Xi i)) J le (apply_fun x i))net_converges_on (product_space I Xi) (product_topology_full I Xi) net J le x
Proof:
Proof not loaded.
Theorem. (net_converges_on_product_topology_full_iff_all_coord_converge)
∀I Xi net J le x : set, I Empty(∀i : set, i Itopology_on (space_family_set Xi i) (space_family_topology Xi i))directed_set J letotal_function_on net J (product_space I Xi)functional_graph netgraph_domain_subset net Jx product_space I Xi(net_converges_on (product_space I Xi) (product_topology_full I Xi) net J le x ∀i : set, i Inet_converges_on (space_family_set Xi i) (space_family_topology Xi i) (compose_fun J net (product_eval_map I Xi i)) J le (apply_fun x i))
Proof:
Proof not loaded.
Theorem. (continuous_combine_or_01)
∀X Tx f g x0 : set, topology_on X Txcontinuous_map X Tx R R_standard_topology fcontinuous_map X Tx R R_standard_topology gx0 Xapply_fun f x0 = 0apply_fun g x0 = 0∃h : set, continuous_map X Tx R R_standard_topology h apply_fun h x0 = 0 ∀y : set, y X(apply_fun f y = 1 apply_fun g y = 1)apply_fun h y = 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (continuous_map_preimage_closed)
∀X Tx Y Ty f C : set, continuous_map X Tx Y Ty fclosed_in Y Ty Cclosed_in X Tx (preimage_of X f C)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (continuous_map_to_generated_topology)
∀X Tx Y B f : set, topology_on X Txbasis_on Y Bfunction_on f X Y(∀b : set, b Bpreimage_of X f b Tx)continuous_map X Tx Y (generated_topology Y B) f
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Urysohn_metrization_theorem)
∀X Tx : set, regular_space X Txsecond_countable_space X Tx∃d : set, metric_on X d metric_topology X d = Tx
Proof:
Proof not loaded.
Theorem. (embedding_via_functions)
∀X Tx : set, topology_on X Txone_point_sets_closed X Tx∀F J : set, separating_family_of_functions X Tx F J∃Fmap : set, embedding_of X Tx (power_real J) (product_topology_full J (const_space_family J R R_standard_topology)) Fmap
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define cauchy_sequence to be λX d seq ⇒ metric_on X d sequence_on seq X ∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀m n : set, m ωn ωN mN nRlt (apply_fun d (apply_fun seq m,apply_fun seq n)) eps of type setsetsetprop.
Definition. We define cauchy_sequence_total to be λX d seq ⇒ metric_on_total X d sequence_on seq X ∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀m n : set, m ωn ωN mN nRlt (apply_fun d (apply_fun seq m,apply_fun seq n)) eps of type setsetsetprop.
Theorem. (cauchy_sequence_total_imp)
∀X d seq : set, cauchy_sequence_total X d seqcauchy_sequence X d seq
Proof:
Proof not loaded.
Definition. We define complete_metric_space to be λX d ⇒ metric_on X d ∀seq : set, sequence_on seq Xcauchy_sequence X d seq∃x : set, converges_to X (metric_topology X d) seq x of type setsetprop.
Definition. We define complete_metric_space_total to be λX d ⇒ metric_on_total X d ∀seq : set, sequence_on seq Xcauchy_sequence_total X d seq∃x : set, converges_to X (metric_topology X d) seq x of type setsetprop.
Definition. We define continuous_at_map to be λX Tx Y Ty f x ⇒ function_on f X Y x X ∀V : set, V Tyapply_fun f x V∃U : set, U Tx x U ∀u : set, u Uapply_fun f u V of type setsetsetsetsetsetprop.
Definition. We define pointwise_limit_metric to be λX Y d fn f ⇒ ∀x : set, x X∀eps : set, eps RRlt 0 eps∃N : set, N ω ∀n : set, n ωN nRlt (apply_fun d (apply_fun (apply_fun fn n) x,apply_fun f x)) eps of type setsetsetsetsetprop.
Definition. We define uniform_limit_metric to be λX Y d fn f ⇒ ∀eps : set, eps RRlt 0 eps∃N : set, N ω ∀n : set, n ωN n∀x : set, x XRlt (apply_fun d (apply_fun (apply_fun fn n) x,apply_fun f x)) eps of type setsetsetsetsetprop.
Theorem. (uniform_limit_metric_imp_pointwise_limit_metric)
∀X Y d fn f : set, uniform_limit_metric X Y d fn fpointwise_limit_metric X Y d fn f
Proof:
Proof not loaded.
Theorem. (converges_to_imp_in_closure_of_terms)
∀X Tx A seq x : set, converges_to X Tx seq x(∀n : set, n ωapply_fun seq n A)x closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (converges_to_imp_in_closure_of_eventually_terms)
∀X Tx A seq x N : set, converges_to X Tx seq xN ω(∀n : set, n ωN napply_fun seq n A)x closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (converges_to_closed_in_contains_limit)
∀X Tx A seq x : set, topology_on X TxA Xclosed_in X Tx Aconverges_to X Tx seq x(∀n : set, n ωapply_fun seq n A)x A
Proof:
Proof not loaded.
Theorem. (uniform_limit_metric_imp_sequence_converges_metric_at_point)
∀X Y d fn f x : set, metric_on Y dfunction_on fn ω (function_space X Y)function_on f X Yx Xuniform_limit_metric X Y d fn fsequence_converges_metric Y d (graph ω (λn : setapply_fun (apply_fun fn n) x)) (apply_fun f x)
Proof:
Proof not loaded.
Theorem. (metric_topology_neighborhood_contains_ball)
∀X d x U : set, metric_on X dx XU metric_topology X dx U∃r : set, r R (Rlt 0 r open_ball X d x r U)
Proof:
Proof not loaded.
Theorem. (metric_topology_neighborhood_contains_ball_bounded)
∀X d x U a : set, metric_on X dx XU metric_topology X dx Ua RRlt 0 a∃r : set, r R Rlt 0 r open_ball X d x r U Rlt r a
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (uniform_limit_metric_imp_converges_to_metric_topology_at_point)
∀X Y d fn f x : set, metric_on Y dfunction_on fn ω (function_space X Y)function_on f X Yx Xuniform_limit_metric X Y d fn fconverges_to Y (metric_topology Y d) (graph ω (λn : setapply_fun (apply_fun fn n) x)) (apply_fun f x)
Proof:
Proof not loaded.
Definition. We define uniform_cauchy_metric to be λX Y d fn ⇒ ∀eps : set, eps RRlt 0 eps∃N : set, N ω ∀m n : set, m ωn ωN mN n∀x : set, x XRlt (apply_fun d (apply_fun (apply_fun fn m) x,apply_fun (apply_fun fn n) x)) eps of type setsetsetsetprop.
Proof:
Proof not loaded.
Theorem. (uniform_limit_of_continuous_to_metric_is_continuous)
∀X Tx Y d fn f : set, topology_on X Txmetric_on Y dfunction_on fn ω (function_space X Y)function_on f X Y(∀n : set, n ωcontinuous_map X Tx Y (metric_topology Y d) (apply_fun fn n))uniform_limit_metric X Y d fn fcontinuous_map X Tx Y (metric_topology Y d) f
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (cauchy_R_bounded_metric_abs_tail_early)
∀seq eps : set, cauchy_sequence R R_bounded_metric seqeps RRlt 0 epsRlt eps 1∃N : set, N ω ∀m n : set, m ωn ωN mN nabs_SNo (add_SNo (apply_fun seq m) (minus_SNo (apply_fun seq n))) < eps
Proof:
Proof not loaded.
Theorem. (abs_Cauchy_sequence_converges_R_standard_topology_early)
∀seq : set, sequence_on seq R(∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀m n : set, m ωn ωN mN nabs_SNo (add_SNo (apply_fun seq m) (minus_SNo (apply_fun seq n))) < eps)∃x : set, converges_to R R_standard_topology seq x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define one_third to be inv_nat 3 of type set.
Definition. We define two_thirds to be add_SNo one_third one_third of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define div_const_fun to be λc ⇒ graph R (λt : setdiv_SNo t c) of type setset.
Theorem. (div_const_fun_apply)
∀c t : set, c Rt Rapply_fun (div_const_fun c) t = div_SNo t c
Proof:
Proof not loaded.
Theorem. (compose_div_const_fun_apply)
∀A f c x : set, x Ac Rapply_fun f x Rapply_fun (compose_fun A f (div_const_fun c)) x = div_SNo (apply_fun f x) c
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (div_const_fun_value_in_R)
∀c t : set, c Rt Rapply_fun (div_const_fun c) t R
Proof:
Proof not loaded.
Theorem. (preimage_div_const_open_ray_upper)
∀c a : set, c R0 < ca Rpreimage_of R (div_const_fun c) (open_ray_upper R a) = open_ray_upper R (mul_SNo a c)
Proof:
Proof not loaded.
Theorem. (preimage_div_const_open_ray_lower)
∀c b : set, c R0 < cb Rpreimage_of R (div_const_fun c) (open_ray_lower R b) = open_ray_lower R (mul_SNo b c)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (div_SNo_minus_den)
∀x y : set, x Ry Ry 0div_SNo x (minus_SNo y) = minus_SNo (div_SNo x y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (div_SNo_closed_interval_scale)
∀den y : set, den R0 < deny closed_interval (minus_SNo den) dendiv_SNo y den closed_interval (minus_SNo 1) 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Rle_add_SNo_1)
∀x y z : set, x Ry Rz RRle x yRle (add_SNo x z) (add_SNo y z)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Rle_minus_contra)
∀x y : set, Rle x yRle (minus_SNo y) (minus_SNo x)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (add_of_pair_map_neg_apply)
∀A f g a : set, a Aapply_fun f a Rapply_fun g a Rapply_fun (compose_fun A (pair_map A f (compose_fun A g neg_fun)) add_fun_R) a = add_SNo (apply_fun f a) (minus_SNo (apply_fun g a))
Proof:
Proof not loaded.
Theorem. (Tietze_stepII_algebra_tail)
∀gx rx ux c : set, SNo gxSNo rxSNo uxSNo cadd_SNo (add_SNo gx (mul_SNo ux c)) (mul_SNo (add_SNo rx (minus_SNo ux)) c) = add_SNo gx (mul_SNo rx c)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Tietze_stepII_real_extension_nonempty)
∀X Tx A f : set, normal_space X Txclosed_in X Tx AA Emptycontinuous_map A (subspace_topology X Tx A) (closed_interval (minus_SNo 1) 1) (closed_interval_topology (minus_SNo 1) 1) f∃gR : set, continuous_map X Tx R R_standard_topology gR (∀x : set, x Aapply_fun gR x = apply_fun f x) (∀x : set, x Xapply_fun gR x closed_interval (minus_SNo 1) 1)
Proof:
Proof not loaded.
Theorem. (Tietze_stepII_real_extension)
∀X Tx A f : set, normal_space X Txclosed_in X Tx Acontinuous_map A (subspace_topology X Tx A) (closed_interval (minus_SNo 1) 1) (closed_interval_topology (minus_SNo 1) 1) f∃gR : set, continuous_map X Tx R R_standard_topology gR (∀x : set, x Aapply_fun gR x = apply_fun f x) (∀x : set, x Xapply_fun gR x closed_interval (minus_SNo 1) 1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Tietze_extension_interval)
∀X Tx A a b f : set, Rle a bnormal_space X Txclosed_in X Tx Acontinuous_map A (subspace_topology X Tx A) (closed_interval a b) (closed_interval_topology a b) f∃g : set, continuous_map X Tx (closed_interval a b) (closed_interval_topology a b) g (∀x : set, x Aapply_fun g x = apply_fun f x)
Proof:
Proof not loaded.
Theorem. (subspace_inclusion_continuous)
∀X Tx A : set, topology_on X TxA Xcontinuous_map A (subspace_topology X Tx A) X Tx {(y,y)|yA}
Proof:
Proof not loaded.
Theorem. (Tietze_extension_real_bounded_interval)
∀X Tx A a b f : set, Rle a bnormal_space X Txclosed_in X Tx Acontinuous_map A (subspace_topology X Tx A) R R_standard_topology f(∀x : set, x Aapply_fun f x closed_interval a b)∃g : set, continuous_map X Tx R R_standard_topology g (∀x : set, x Aapply_fun g x = apply_fun f x)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define bounded_transform_phi to be graph R (λt : setdiv_SNo t (add_SNo 1 (abs_SNo t))) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define bounded_transform_psi to be graph R (λs : setdiv_SNo s (add_SNo 1 (minus_SNo (abs_SNo s)))) of type set.
Theorem. (abs_div_SNo_pos)
∀x y : set, SNo xSNo y0 < yabs_SNo (div_SNo x y) = div_SNo (abs_SNo x) y
Proof:
Proof not loaded.
Theorem. (div_SNo_nonneg_pos_nonneg)
∀x y : set, SNo xSNo y0 x0 < y0 div_SNo x y
Proof:
Proof not loaded.
Theorem. (div_SNo_minus_num)
∀x y : set, SNo xSNo yy 0div_SNo (minus_SNo x) y = minus_SNo (div_SNo x y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Tietze_extension_real)
∀X Tx A f : set, normal_space X Txclosed_in X Tx Acontinuous_map A (subspace_topology X Tx A) R R_standard_topology f∃g : set, continuous_map X Tx R R_standard_topology g (∀x : set, x Aapply_fun g x = apply_fun f x)
Proof:
Proof not loaded.
Definition. We define m_manifold to be λX Tx m ⇒ Hausdorff_space X Tx second_countable_space X Tx m ω ∀x : set, x X∃U : set, U Tx x U ∃V : set, V (euclidean_topology m) ∃f : set, homeomorphism U (subspace_topology X Tx U) V (subspace_topology (euclidean_space m) (euclidean_topology m) V) f of type setsetsetprop.
Definition. We define support_of to be λX Tx phi ⇒ closure_of X Tx {xX|apply_fun phi x 0} of type setsetsetset.
Theorem. (support_of_sub_X)
∀X Tx phi : set, topology_on X Txsupport_of X Tx phi X
Proof:
Proof not loaded.
Theorem. (support_of_closed_in)
∀X Tx phi : set, topology_on X Txclosed_in X Tx (support_of X Tx phi)
Proof:
Proof not loaded.
Theorem. (support_of_contains_nonzero)
∀X Tx phi x : set, topology_on X Txx Xapply_fun phi x 0x support_of X Tx phi
Proof:
Proof not loaded.
Theorem. (support_of_disjoint_open_implies_value_zero)
∀X Tx phi N x : set, topology_on X TxN Txx Nsupport_of X Tx phi N = Emptyapply_fun phi x = 0
Proof:
Proof not loaded.
Theorem. (support_of_mul_two_Subq_support_left)
∀X Tx f g : set, topology_on X Tx(∀x : set, x Xapply_fun f x R)(∀x : set, x Xapply_fun g x R)support_of X Tx (compose_fun X (pair_map X f g) mul_fun_R) support_of X Tx f
Proof:
Proof not loaded.
Theorem. (support_of_mul_two_Subq_support_right)
∀X Tx f g : set, topology_on X Tx(∀x : set, x Xapply_fun f x R)(∀x : set, x Xapply_fun g x R)support_of X Tx (compose_fun X (pair_map X f g) mul_fun_R) support_of X Tx g
Proof:
Proof not loaded.
Theorem. (open_intersects_closure_implies_intersects)
∀X Tx A N : set, topology_on X TxN TxN closure_of X Tx A EmptyN A Empty
Proof:
Proof not loaded.
Theorem. (support_of_sub_closure_of)
∀X Tx phi U : set, topology_on X TxU X(∀x : set, x Xapply_fun phi x 0x U)support_of X Tx phi closure_of X Tx U
Proof:
Proof not loaded.
Theorem. (Urysohn_bump_closed_in_open)
∀X Tx A V : set, normal_space X Txclosed_in X Tx AV TxA V∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x Aapply_fun f x = 1) (∀x : set, x (X V)apply_fun f x = 0) (∀x : set, x Xapply_fun f x unit_interval)
Proof:
Proof not loaded.
Theorem. (support_of_zero_outside_open_sub_closure)
∀X Tx f V : set, topology_on X TxV Tx(∀x : set, x (X V)apply_fun f x = 0)support_of X Tx f closure_of X Tx V
Proof:
Proof not loaded.
Theorem. (Urysohn_bump_support_sub_closure)
∀X Tx A V : set, normal_space X Txclosed_in X Tx AV TxA V∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x Aapply_fun f x = 1) (∀x : set, x (X V)apply_fun f x = 0) (∀x : set, x Xapply_fun f x unit_interval) support_of X Tx f closure_of X Tx V
Proof:
Proof not loaded.
Definition. We define partition_of_unity_dominated to be λX Tx U ⇒ topology_on X Tx open_cover X Tx U ∃P : set, P function_space X R (∀f : set, f Pcontinuous_map X Tx R R_standard_topology f) (∀f x : set, f Px Xapply_fun f x unit_interval) (∀f : set, f P∃u : set, u U support_of X Tx f u) (∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0) (∀x : set, x X∃F : set, finite F F P (∀f : set, f Papply_fun f x 0f F) ∃n : set, n ω ∃e : set, bijection n F e ∃p : set, function_on p (ordsucc n) R apply_fun p Empty = 0 (∀k : set, k napply_fun p (ordsucc k) = add_SNo (apply_fun p k) (apply_fun (apply_fun e k) x)) apply_fun p n = 1) of type setsetsetprop.
Definition. We define partition_of_unity_family to be λX Tx U P ⇒ P function_space X R (∀f : set, f Pcontinuous_map X Tx R R_standard_topology f) (∀f x : set, f Px Xapply_fun f x unit_interval) (∀f : set, f P∃u : set, u U support_of X Tx f u) (∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0) (∀x : set, x X∃F : set, finite F F P (∀f : set, f Papply_fun f x 0f F) ∃n : set, n ω ∃e : set, bijection n F e ∃p : set, function_on p (ordsucc n) R apply_fun p Empty = 0 (∀k : set, k napply_fun p (ordsucc k) = add_SNo (apply_fun p k) (apply_fun (apply_fun e k) x)) apply_fun p n = 1) of type setsetsetsetprop.
Proof:
Proof not loaded.
Theorem. (partition_of_unity_family_continuous)
∀X Tx U P : set, partition_of_unity_family X Tx U P∀f : set, f Pcontinuous_map X Tx R R_standard_topology f
Proof:
Proof not loaded.
Theorem. (partition_of_unity_family_unit_interval)
∀X Tx U P : set, partition_of_unity_family X Tx U P∀f x : set, f Px Xapply_fun f x unit_interval
Proof:
Proof not loaded.
Theorem. (partition_of_unity_family_support_dominated)
∀X Tx U P : set, partition_of_unity_family X Tx U P∀f : set, f P∃u : set, u U support_of X Tx f u
Proof:
Proof not loaded.
Theorem. (partition_of_unity_family_supports_locally_finite)
∀X Tx U P : set, partition_of_unity_family X Tx U P∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0
Proof:
Proof not loaded.
Theorem. (pointwise_finite_from_local_support_finite)
∀X Tx P x N F0 : set, topology_on X Txx XN Txx Nfinite F0F0 P(∀f : set, f Psupport_of X Tx f N Emptyf F0)(∀f : set, f Papply_fun f x 0f F0)
Proof:
Proof not loaded.
Theorem. (support_disjoint_open_implies_zero_on_open)
∀X Tx f N : set, topology_on X TxN Txsupport_of X Tx f N = Empty∀x : set, x Napply_fun f x = 0
Proof:
Proof not loaded.
Theorem. (local_support_finite_outside_F0_zero_on_open)
∀X Tx P N F0 f : set, topology_on X TxN TxF0 P(∀g : set, g Psupport_of X Tx g N Emptyg F0)f P¬ (f F0)∀x : set, x Napply_fun f x = 0
Proof:
Proof not loaded.
Theorem. (support_of_monotone_nonzero)
∀X Tx f g : set, topology_on X Tx(∀x : set, x Xapply_fun g x 0apply_fun f x 0)support_of X Tx g support_of X Tx f
Proof:
Proof not loaded.
Theorem. (pointwise_finite_on_neighborhood_from_local_support_finite)
∀X Tx P N F0 : set, topology_on X TxN Txfinite F0F0 P(∀f : set, f Psupport_of X Tx f N Emptyf F0)∀y : set, y N∀f : set, f Papply_fun f y 0f F0
Proof:
Proof not loaded.
Theorem. (enumerated_finite_sum_continuous)
∀X Tx F n e : set, topology_on X Txn ωbijection n F e(∀f : set, f Fcontinuous_map X Tx R R_standard_topology f)continuous_map X Tx R R_standard_topology (graph X (λx : setnat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n))
Proof:
Proof not loaded.
Theorem. (nat_primrec_add_mul_const_right)
∀X n e x r : set, n ωx X(∀k : set, k napply_fun (apply_fun e k) x R)r Rmul_SNo (nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n) r = nat_primrec 0 (λk acc : setadd_SNo acc (mul_SNo (apply_fun (apply_fun e k) x) r)) n
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_times_recip_pos_eq_1)
∀X n e x : set, n ωx X(∀k : set, k napply_fun (apply_fun e k) x R)nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n RRlt 0 (nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n)nat_primrec 0 (λk acc : setadd_SNo acc (mul_SNo (apply_fun (apply_fun e k) x) (recip_SNo_pos (nat_primrec 0 (λj b : setadd_SNo b (apply_fun (apply_fun e j) x)) n)))) n = 1
Proof:
Proof not loaded.
Theorem. (Rle_increase_by_nonneg_left)
∀x y : set, x Ry RRle 0 xRle y (add_SNo x y)
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_Rle0_of_Rle0_terms)
∀X n e x : set, n ωx X(∀k : set, k napply_fun (apply_fun e k) x R)(∀k : set, k nRle 0 (apply_fun (apply_fun e k) x))nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n R Rle 0 (nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n)
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_Rle_succ_of_Rle0_term)
∀X n e x k : set, n ωk nx X(∀j : set, j napply_fun (apply_fun e j) x R)(∀j : set, j nRle 0 (apply_fun (apply_fun e j) x))nat_primrec 0 (λj acc : setadd_SNo acc (apply_fun (apply_fun e j) x)) k RRle (nat_primrec 0 (λj acc : setadd_SNo acc (apply_fun (apply_fun e j) x)) k) (nat_primrec 0 (λj acc : setadd_SNo acc (apply_fun (apply_fun e j) x)) (ordsucc k))
Proof:
Proof not loaded.
Theorem. (partition_of_unity_family_pointwise_finite_sum)
∀X Tx U P : set, partition_of_unity_family X Tx U P∀x : set, x X∃F : set, finite F F P (∀f : set, f Papply_fun f x 0f F) ∃n : set, n ω ∃e : set, bijection n F e ∃p : set, function_on p (ordsucc n) R apply_fun p Empty = 0 (∀k : set, k napply_fun p (ordsucc k) = add_SNo (apply_fun p k) (apply_fun (apply_fun e k) x)) apply_fun p n = 1
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_continuous_map)
∀X Tx n F e : set, topology_on X Txn ωbijection n F e(∀f : set, f Fcontinuous_map X Tx R R_standard_topology f)continuous_map X Tx R R_standard_topology (graph X (λx : setnat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n))
Proof:
Proof not loaded.
Theorem. (finite_ex_bijection_from_omega)
∀F : set, finite F∃n e : set, n ω bijection n F e
Proof:
Proof not loaded.
Theorem. (locally_finite_supports_pointwise_sum_witness)
∀X Tx P : set, topology_on X TxP function_space X R(∀f x : set, f Px Xapply_fun f x unit_interval)(∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0)∀x : set, x X∃F : set, finite F F P (∀f : set, f Papply_fun f x 0f F) ∃n : set, n ω ∃e : set, bijection n F e ∃p : set, function_on p (ordsucc n) R apply_fun p Empty = 0 (∀k : set, k napply_fun p (ordsucc k) = add_SNo (apply_fun p k) (apply_fun (apply_fun e k) x))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (partition_of_unity_dominated_ex_family)
∀X Tx U : set, partition_of_unity_dominated X Tx U∃P : set, P function_space X R (∀f : set, f Pcontinuous_map X Tx R R_standard_topology f) (∀f x : set, f Px Xapply_fun f x unit_interval) (∀f : set, f P∃u : set, u U support_of X Tx f u) (∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0) (∀x : set, x X∃F : set, finite F F P (∀f : set, f Papply_fun f x 0f F) ∃n : set, n ω ∃e : set, bijection n F e ∃p : set, function_on p (ordsucc n) R apply_fun p Empty = 0 (∀k : set, k napply_fun p (ordsucc k) = add_SNo (apply_fun p k) (apply_fun (apply_fun e k) x)) apply_fun p n = 1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_congr_on)
∀X n e1 e2 x : set, nat_p nx X(∀k : set, k napply_fun e1 k = apply_fun e2 k)nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e1 k) x)) n = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e2 k) x)) n
Proof:
Proof not loaded.
Definition. We define swap_last_two to be λe m ⇒ graph (ordsucc (ordsucc m)) (λi : setif i = m then apply_fun e (ordsucc m) else if i = ordsucc m then apply_fun e m else apply_fun e i) of type setsetset.
Proof:
Proof not loaded.
Theorem. (swap_last_two_at_m)
∀e m : set, nat_p mapply_fun (swap_last_two e m) m = apply_fun e (ordsucc m)
Proof:
Proof not loaded.
Theorem. (swap_last_two_at_sm)
∀e m : set, nat_p mapply_fun (swap_last_two e m) (ordsucc m) = apply_fun e m
Proof:
Proof not loaded.
Theorem. (function_on_swap_last_two)
∀F e m : set, nat_p mfunction_on e (ordsucc (ordsucc m)) Ffunction_on (swap_last_two e m) (ordsucc (ordsucc m)) F
Proof:
Proof not loaded.
Theorem. (bijection_swap_last_two)
∀F e m : set, nat_p mbijection (ordsucc (ordsucc m)) F ebijection (ordsucc (ordsucc m)) F (swap_last_two e m)
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_swap_last_two_unit_interval)
∀X m e x : set, m ωx X(∀k : set, k ordsucc (ordsucc m)apply_fun (apply_fun e k) x unit_interval)nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun (swap_last_two e m) k) x)) (ordsucc (ordsucc m)) = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) (ordsucc (ordsucc m))
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_S_drop_zero_unit_interval)
∀X n e x : set, n ωx X(∀k : set, k ordsucc napply_fun (apply_fun e k) x unit_interval)apply_fun (apply_fun e n) x = 0nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) (ordsucc n) = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_drop_last_zero_bijection_unit_interval)
∀X n F e x : set, n ωx X(∀k : set, k ordsucc napply_fun (apply_fun e k) x unit_interval)apply_fun (apply_fun e n) x = 0bijection (ordsucc n) F ebijection n (F {apply_fun e n}) e nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) (ordsucc n) = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n
Proof:
Proof not loaded.
Definition. We define swap_adjacent to be λe i n ⇒ graph n (λj : setif j = i then apply_fun e (ordsucc i) else if j = ordsucc i then apply_fun e i else apply_fun e j) of type setsetsetset.
Proof:
Proof not loaded.
Theorem. (swap_adjacent_at_succ)
∀e i n : set, ordsucc i napply_fun (swap_adjacent e i n) (ordsucc i) = apply_fun e i
Proof:
Proof not loaded.
Theorem. (swap_adjacent_at_i)
∀e i n : set, i napply_fun (swap_adjacent e i n) i = apply_fun e (ordsucc i)
Proof:
Proof not loaded.
Theorem. (function_on_swap_adjacent)
∀F e i n : set, i nordsucc i nfunction_on e n Ffunction_on (swap_adjacent e i n) n F
Proof:
Proof not loaded.
Theorem. (bijection_swap_adjacent)
∀F e i n : set, i nordsucc i nbijection n F ebijection n F (swap_adjacent e i n)
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_swap_adjacent_unit_interval)
∀X n e i x : set, n ωi nordsucc i nx X(∀k : set, k napply_fun (apply_fun e k) x unit_interval)nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun (swap_adjacent e i n) k) x)) n = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_swap_adjacent_bijection_unit_interval)
∀X n F e i x : set, n ωi nordsucc i nx Xbijection n F e(∀k : set, k napply_fun (apply_fun e k) x unit_interval)bijection n F (swap_adjacent e i n) nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun (swap_adjacent e i n) k) x)) n = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bubble_zero_right_unit_interval)
∀X n F e i x : set, n ωi nordsucc i nx Xbijection n F e(∀k : set, k napply_fun (apply_fun e k) x unit_interval)apply_fun (apply_fun e i) x = 0∃e' : set, e' = swap_adjacent e i n bijection n F e' nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e' k) x)) n = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n apply_fun (apply_fun e' (ordsucc i)) x = 0
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bijection_move_value_to_last_unit_interval)
∀X m F e flast x : set, m ωx Xbijection (ordsucc m) F eflast F(∀f : set, f Fapply_fun f x unit_interval)∃e' : set, bijection (ordsucc m) F e' nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) (ordsucc m) = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e' k) x)) (ordsucc m) apply_fun e' m = flast
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bijection_Rle1_if_some_term_eq1_unit_interval)
∀X x m F e f1 : set, m ωx Xbijection (ordsucc m) F ef1 F(∀f : set, f Fapply_fun f x unit_interval)apply_fun f1 x = 1Rle 1 (nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) (ordsucc m))
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bijection_Rlt0_if_some_term_eq1_unit_interval)
∀X x m F e f1 : set, m ωx Xbijection (ordsucc m) F ef1 F(∀f : set, f Fapply_fun f x unit_interval)apply_fun f1 x = 1Rlt 0 (nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) (ordsucc m))
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bijection_independent_unit_interval)
∀X m F e1 e2 x : set, m ωx Xbijection (ordsucc m) F e1bijection (ordsucc m) F e2(∀f : set, f Fapply_fun f x unit_interval)nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e1 k) x)) (ordsucc m) = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e2 k) x)) (ordsucc m)
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bijection_drop_zero_element_unit_interval)
∀X m F e f0 x : set, m ωx Xbijection (ordsucc m) F ef0 F(∀f : set, f Fapply_fun f x unit_interval)apply_fun f0 x = 0∃e' : set, bijection m (F {f0}) e' nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) (ordsucc m) = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e' k) x)) m
Proof:
Proof not loaded.
Theorem. (equip_omega_eq)
∀n m : set, n ωm ωequip n mn = m
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bijection_zero_outside_unit_interval)
∀X x n0 F0 e0 n F e : set, x Xn0 ωfinite FF0 F(∃f : set, f F0)(∀f : set, f F0apply_fun f x unit_interval)(∀f : set, f F¬ (f F0)apply_fun f x = 0)bijection n0 F0 e0n ωbijection n F enat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e0 k) x)) n0 = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n
Proof:
Proof not loaded.
Theorem. (nat_primrec_sum_bijection_equal_of_two_control_sets_unit_interval)
∀X x n0 F0 e0 n1 F1 e1 n F e : set, x Xn0 ωn1 ωn ωfinite FF0 FF1 F(∃f : set, f F0)(∃f : set, f F1)(∀f : set, f F0apply_fun f x unit_interval)(∀f : set, f F1apply_fun f x unit_interval)(∀f : set, f F¬ (f F0)apply_fun f x = 0)(∀f : set, f F¬ (f F1)apply_fun f x = 0)bijection n0 F0 e0bijection n1 F1 e1bijection n F enat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e0 k) x)) n0 = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e1 k) x)) n1
Proof:
Proof not loaded.
Theorem. (partition_of_unity_dominated_supports_locally_finite)
∀X Tx U : set, partition_of_unity_dominated X Tx U∃P : set, P function_space X R (∀f : set, f Pcontinuous_map X Tx R R_standard_topology f) (∀f x : set, f Px Xapply_fun f x unit_interval) (∀f : set, f P∃u : set, u U support_of X Tx f u) (∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0)
Proof:
Proof not loaded.
Theorem. (partition_of_unity_dominated_pointwise_finite_sum)
∀X Tx U : set, partition_of_unity_dominated X Tx U∃P : set, ∀x : set, x X∃F : set, finite F F P (∀f : set, f Papply_fun f x 0f F) ∃n : set, n ω ∃e : set, bijection n F e ∃p : set, function_on p (ordsucc n) R apply_fun p Empty = 0 (∀k : set, k napply_fun p (ordsucc k) = add_SNo (apply_fun p k) (apply_fun (apply_fun e k) x)) apply_fun p n = 1
Proof:
Proof not loaded.
Definition. We define locally_finite_family to be λX Tx F ⇒ topology_on X Tx ∀x : set, x X∃N : set, N Tx x N ∃S : set, finite S S F ∀A : set, A FA N EmptyA S of type setsetsetprop.
Theorem. (locally_finite_family_topology)
∀X Tx F : set, locally_finite_family X Tx Ftopology_on X Tx
Proof:
Proof not loaded.
Theorem. (locally_finite_family_property)
∀X Tx F : set, locally_finite_family X Tx F∀x : set, x X∃N : set, N Tx x N ∃S : set, finite S S F ∀A : set, A FA N EmptyA S
Proof:
Proof not loaded.
Theorem. (locally_finite_open_cover_neighborhood_finite_subunion)
∀X Tx W x : set, open_cover X Tx Wlocally_finite_family X Tx Wx X∃N S : set, N Tx x N finite S S W N S
Proof:
Proof not loaded.
Theorem. (locally_finite_open_cover_closure_point_finite)
∀X Tx W x : set, open_cover X Tx Wlocally_finite_family X Tx Wx X∃S : set, finite S S W ∀w : set, w Wx closure_of X Tx ww S
Proof:
Proof not loaded.
Theorem. (locally_finite_subfamily)
∀X Tx F G : set, locally_finite_family X Tx FG Flocally_finite_family X Tx G
Proof:
Proof not loaded.
Theorem. (locally_finite_family_Repl_subsets)
∀X Tx W : set, ∀f : setset, locally_finite_family X Tx W(∀w : set, w Wf w w)locally_finite_family X Tx {f w|wW}
Proof:
Proof not loaded.
Theorem. (locally_finite_family_point_finite_ex)
∀X Tx F : set, locally_finite_family X Tx F∀x : set, x X∃S : set, finite S S F ∀A : set, A Fx AA S
Proof:
Proof not loaded.
Theorem. (finite_family_locally_finite)
∀X Tx F : set, topology_on X Txfinite FF 𝒫 Xlocally_finite_family X Tx F
Proof:
Proof not loaded.
Theorem. (finite_open_cover_locally_finite)
∀X Tx U : set, topology_on X Txopen_cover X Tx Ufinite Ulocally_finite_family X Tx U
Proof:
Proof not loaded.
Theorem. (finite_open_cover_of_locally_finite)
∀X Tx Fam : set, open_cover_of X Tx Famfinite Famlocally_finite_family X Tx Fam
Proof:
Proof not loaded.
Theorem. (locally_finite_family_closures)
∀X Tx Fam : set, locally_finite_family X Tx Famlocally_finite_family X Tx {closure_of X Tx A|AFam}
Proof:
Proof not loaded.
Theorem. (Union_locally_finite_closed_is_closed)
∀X Tx Fam : set, locally_finite_family X Tx Fam(∀A : set, A Famclosed_in X Tx A)closed_in X Tx ( Fam)
Proof:
Proof not loaded.
Theorem. (locally_finite_open_cover_closures_closed_cover)
∀X Tx W : set, open_cover X Tx Wlocally_finite_family X Tx W∃ClW : set, ClW = {closure_of X Tx w|wW} ((∀C : set, C ClWclosed_in X Tx C) covers X ClW) locally_finite_family X Tx ClW (∀C : set, C ClW∃w : set, w W C = closure_of X Tx w)
Proof:
Proof not loaded.
Theorem. (normal_space_finite_open_cover_shrinking)
∀X Tx W : set, normal_space X Txopen_cover X Tx Wfinite W∃V : set, open_cover X Tx V finite V (∀v : set, v V∃w : set, w W v w) ∀v : set, v V∃w : set, w W closure_of X Tx v w
Proof:
Proof not loaded.
Theorem. (normal_space_finite_open_cover_shrinking_closed)
∀X Tx A F : set, normal_space X Txclosed_in X Tx Afinite F(∀w : set, w Fw Tx)A F∃V : set, finite V (∀v : set, v Vv Tx) A V ∀v : set, v V∃w : set, w F closure_of X Tx v w
Proof:
Proof not loaded.
Theorem. (locally_finite_open_cover_core_open_set)
∀X Tx W w : set, topology_on X Txopen_cover X Tx Wlocally_finite_family X Tx Ww W∃Bw : set, Bw Tx Bw w closure_of X Tx Bw w
Proof:
Proof not loaded.
Theorem. (locally_finite_open_cover_core_family)
∀X Tx W : set, topology_on X Txopen_cover X Tx Wlocally_finite_family X Tx W∃B : set, (∀b : set, b Bb Tx) locally_finite_family X Tx B (∀b : set, b B∃w : set, w W b w) ∀b : set, b B∃w : set, w W closure_of X Tx b w
Proof:
Proof not loaded.
Theorem. (nonempty_subset_of_ordinal_has_least)
∀I S : set, ordinal IS IS Empty∃m : set, m S ∀s : set, s Sm s
Proof:
Proof not loaded.
Theorem. (ordinal_subset_least_unique)
∀I S m1 m2 : set, ordinal IS Im1 S(∀s : set, s Sm1 s)m2 S(∀s : set, s Sm2 s)m1 = m2
Proof:
Proof not loaded.
Theorem. (finite_nonempty_subset_of_ordinal_has_max)
∀I S : set, ordinal Ifinite SS IS Empty∃m : set, m S ∀s : set, s Ss m
Proof:
Proof not loaded.
Theorem. (point_finite_cover_has_max_index)
∀X W I : set, ∀idx pickW : setset, ordinal Icovers X W(∀x : set, x X∃S : set, finite S S W ∀A : set, A Wx AA S)(∀w : set, w Widx w I)(∀i : set, i IpickW i W idx (pickW i) = i)(∀w : set, w WpickW (idx w) = w)∀x : set, x X∃imax : set, imax I x pickW imax ∀j : set, j Iimax jx pickW j
Proof:
Proof not loaded.
Theorem. (normal_locally_finite_open_cover_shrinking_rec)
∀X Tx W : set, normal_space X Txopen_cover X Tx Wlocally_finite_family X Tx W∃V : set, open_cover X Tx V locally_finite_family X Tx V (∀v : set, v V∃w : set, w W v w) ∀v : set, v V∃w : set, w W closure_of X Tx v w
Proof:
Proof not loaded.
Theorem. (normal_locally_finite_open_cover_shrinking)
∀X Tx W : set, normal_space X Txopen_cover X Tx Wlocally_finite_family X Tx W∃V : set, open_cover X Tx V locally_finite_family X Tx V (∀v : set, v V∃w : set, w W v w) ∀v : set, v V∃w : set, w W closure_of X Tx v w
Proof:
Proof not loaded.
Definition. We define refine_of to be λV U ⇒ ∀v : set, v V∃u : set, u U v u of type setsetprop.
Axiom. (function_space_extensional) We take the following as an axiom:
∀X Y f g : set, f function_space X Yg function_space X Y(∀x : set, x Xapply_fun f x = apply_fun g x)f = g
Theorem. (locally_finite_bump_cover_normalizes_to_partition_of_unity_dominated)
∀X Tx U V P : set, topology_on X Txopen_cover X Tx Uopen_cover X Tx Vlocally_finite_family X Tx Vrefine_of V UP function_space X R (∀f : set, f Pcontinuous_map X Tx R R_standard_topology f) (∀f x : set, f Px Xapply_fun f x unit_interval) (∀f : set, f P∃u : set, u U support_of X Tx f u) (∀x : set, x X∃f : set, f P apply_fun f x = 1) (∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0)partition_of_unity_dominated X Tx U
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (normal_locally_finite_partition_of_unity_family)
∀X Tx W : set, normal_space X Txopen_cover X Tx Wlocally_finite_family X Tx W∃P : set, partition_of_unity_family X Tx W P
Proof:
Proof not loaded.
Theorem. (finite_open_cover_has_partition_of_unity_family)
∀X Tx U : set, normal_space X Txfinite Uopen_cover X Tx U∃P : set, partition_of_unity_family X Tx U P
Proof:
Proof not loaded.
Theorem. (finite_partition_of_unity_exists)
∀X Tx U : set, normal_space X Txfinite Uopen_cover X Tx Upartition_of_unity_dominated X Tx U
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define finite_intersection_property to be λX A ⇒ A 𝒫 X ∀F : set, finite FF Aintersection_of_family X F Empty of type setsetprop.
Definition. We define maximal_finite_intersection_property to be λX D ⇒ finite_intersection_property X D ∀E : set, D Efinite_intersection_property X EE D of type setsetprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Lemma37_2b_max_fip_meets_all_implies_in)
∀X D A : set, maximal_finite_intersection_property X DA X(∀B : set, B DA B Empty)A D
Proof:
Proof not loaded.
Theorem. (compact_space_closed_FIP_intersection_nonempty)
∀X Tx D : set, compact_space X Tx(∀C : set, C Dclosed_in X Tx C)finite_intersection_property X Dintersection_of_family X D Empty
Proof:
Proof not loaded.
Theorem. (compact_space_of_closed_FIP_intersection_nonempty)
∀X Tx : set, topology_on X Tx(∀D : set, (∀C : set, C Dclosed_in X Tx C)finite_intersection_property X Dintersection_of_family X D Empty)compact_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Axiom. (Tychonoff_coordinate_subnets_to_common_subnet) We take the following as an axiom:
∀I Xi N x : set, I Emptynet_pack_in_space (product_space I Xi) Nx product_space I Xi(∀i : set, i I∃Ni Si : set, net_pack_in_space (space_family_set Xi i) Ni net_pack_index Ni = net_pack_index N net_pack_le Ni = net_pack_le N Ni = net_pack (net_pack_index N) (net_pack_le N) (graph (net_pack_index N) (λj : setapply_fun (apply_fun (net_pack_fun N) j) i)) subnet_pack_of_in (space_family_set Xi i) Ni Si net_pack_converges (space_family_set Xi i) (space_family_topology Xi i) Si (apply_fun x i))∃J le net : set, subnet_pack_of_in (product_space I Xi) N (net_pack J le net) (∀i : set, i Inet_converges_on (space_family_set Xi i) (space_family_topology Xi i) (compose_fun J net (product_eval_map I Xi i)) J le (apply_fun x i))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Tychonoff_theorem)
∀I Xi : set, (∀i : set, i Icompact_space (product_component Xi i) (product_component_topology Xi i))compact_space (product_space I Xi) (product_topology_full I Xi)
Proof:
Proof not loaded.
Definition. We define Stone_Cech_index to be λX Tx ⇒ {ffunction_space X unit_interval|continuous_map X Tx unit_interval unit_interval_topology f} of type setsetset.
Definition. We define Stone_Cech_ambient_family to be λX Tx ⇒ const_space_family (Stone_Cech_index X Tx) unit_interval unit_interval_topology of type setsetset.
Definition. We define Stone_Cech_ambient_space to be λX Tx ⇒ product_space (Stone_Cech_index X Tx) (Stone_Cech_ambient_family X Tx) of type setsetset.
Definition. We define Stone_Cech_ambient_topology to be λX Tx ⇒ product_topology_full (Stone_Cech_index X Tx) (Stone_Cech_ambient_family X Tx) of type setsetset.
Definition. We define Stone_Cech_image to be λX Tx ⇒ {pStone_Cech_ambient_space X Tx|∃x : set, x X p = graph (Stone_Cech_index X Tx) (λf : setapply_fun f x)} of type setsetset.
Definition. We define Stone_Cech_compactification to be λX Tx ⇒ closure_of (Stone_Cech_ambient_space X Tx) (Stone_Cech_ambient_topology X Tx) (Stone_Cech_image X Tx) of type setsetset.
Proof:
Proof not loaded.
Theorem. (refine_trans)
∀U V W : set, refine_of W Vrefine_of V Urefine_of W U
Proof:
Proof not loaded.
Theorem. (partition_of_unity_family_refine)
∀X Tx U V P : set, partition_of_unity_family X Tx V Prefine_of V Upartition_of_unity_family X Tx U P
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (locally_finite_family_empty)
∀X Tx : set, topology_on X Txlocally_finite_family X Tx Empty
Proof:
Proof not loaded.
Theorem. (finite_Repl)
∀X : set, finite X∀F : setset, finite {F x|xX}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (finite_family_locally_finite_family)
∀X Tx F : set, topology_on X Txfinite Flocally_finite_family X Tx F
Proof:
Proof not loaded.
Theorem. (finite_open_cover_locally_finite_family)
∀X Tx U : set, topology_on X Txopen_cover X Tx Ufinite Ulocally_finite_family X Tx U
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (locally_finite_open_cover_neighborhood_finite_subcover)
∀X Tx W x : set, open_cover X Tx Wlocally_finite_family X Tx Wx X∃N : set, N Tx x N ∃S : set, finite S S W N S ∀A : set, A WA N EmptyA S
Proof:
Proof not loaded.
Theorem. (locally_finite_family_point_finite)
∀X Tx F x : set, locally_finite_family X Tx Fx Xfinite {AF|x A}
Proof:
Proof not loaded.
Theorem. (closure_Union_locally_finite_subset_Union_closures)
∀X Tx Fam : set, (∀A : set, A FamA X)locally_finite_family X Tx Famclosure_of X Tx ( Fam) {closure_of X Tx A|AFam}
Proof:
Proof not loaded.
Theorem. (closure_Union_locally_finite_sub_open)
∀X Tx Fam U : set, topology_on X Tx(∀A : set, A FamA X)locally_finite_family X Tx FamU Tx(∀A : set, A Famclosure_of X Tx A U)closure_of X Tx ( Fam) U
Proof:
Proof not loaded.
Theorem. (lemma39_1a_subcollection_locally_finite)
∀X Tx Fam Sub : set, locally_finite_family X Tx FamSub Famlocally_finite_family X Tx Sub
Proof:
Proof not loaded.
Theorem. (lemma39_1b_closures_locally_finite)
∀X Tx Fam : set, (∀A : set, A FamA X)locally_finite_family X Tx Famlocally_finite_family X Tx {closure_of X Tx A|AFam}
Proof:
Proof not loaded.
Theorem. (lemma39_1c_closure_Union_eq_Union_closures)
∀X Tx Fam : set, topology_on X Tx(∀A : set, A FamA X)locally_finite_family X Tx Famclosure_of X Tx ( Fam) = {closure_of X Tx A|AFam}
Proof:
Proof not loaded.
Theorem. (locally_finite_family_closure_point_finite_ex)
∀X Tx Fam : set, topology_on X Tx(∀A : set, A FamA X)locally_finite_family X Tx Fam∀x : set, x X∃S : set, finite S S {closure_of X Tx A|AFam} ∀A : set, A Famx closure_of X Tx Aclosure_of X Tx A S
Proof:
Proof not loaded.
Definition. We define locally_finite_basis to be λX Tx ⇒ topology_on X Tx ∃B : set, basis_generates X B Tx locally_finite_family X Tx B (∀b : set, b Bb Tx) of type setsetprop.
Definition. We define sigma_locally_finite_basis to be λX Tx ⇒ topology_on X Tx ∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀F : set, F Famslocally_finite_family X Tx F) basis_generates X ( Fams) Tx ∀b : set, b Famsb Tx of type setsetprop.
Theorem. (sigma_locally_finite_basis_data)
∀X Tx : set, sigma_locally_finite_basis X Tx∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀F : set, F Famslocally_finite_family X Tx F) basis_generates X ( Fams) Tx ∀b : set, b Famsb Tx
Proof:
Proof not loaded.
Theorem. (basis_generates_imp_basis_refines)
∀X Tx B : set, basis_generates X B Txbasis_refines X B Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Gdelta_simple to be λX Tx A ⇒ ∃Fam : set, countable_set Fam Fam Tx A = intersection_of_family X Fam of type setsetsetprop.
Theorem. (Union_subfamily_locally_finite_closed_is_closed_early)
∀X Tx Fam S : set, locally_finite_family X Tx Fam(∀A : set, A Famclosed_in X Tx A)S Famclosed_in X Tx ( S)
Proof:
Proof not loaded.
Theorem. (lemma40_1_step1_open_as_countable_union)
∀X Tx W : set, regular_space X Txsigma_locally_finite_basis X TxW Tx∃Ufam : set, countable_set Ufam Ufam Tx Ufam = W ∀U : set, U Ufamclosure_of X Tx U W
Proof:
Proof not loaded.
Theorem. (countable_closed_separation)
∀X Tx A B Cand Dand : set, topology_on X TxA XB XCand TxDand Txcountable_set Candcountable_set DandA CandB Dand(∀c : set, c Candclosure_of X Tx c B = Empty)(∀d : set, d Dandclosure_of X Tx d A = Empty)∃U V : set, U Tx V Tx A U B V U V = Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (lemma40_2_closed_Gdelta_has_positive_function)
∀X Tx A : set, normal_space X Txclosed_in X Tx AGdelta_simple X Tx A∃f : set, continuous_map X Tx unit_interval unit_interval_topology f (∀x : set, x Aapply_fun f x = 0) (∀x : set, x Xx ARlt 0 (apply_fun f x))
Proof:
Proof not loaded.
Theorem. (open_set_has_positive_support_function)
∀X Tx U : set, normal_space X Tx(∀C : set, closed_in X Tx CGdelta_simple X Tx C)U Tx∃f : set, f function_space X R continuous_map X Tx R R_standard_topology f (∀x : set, x X Uapply_fun f x = 0) (∀x : set, x URlt 0 (apply_fun f x))
Proof:
Proof not loaded.
Theorem. (open_set_has_positive_support_function_unit_interval)
∀X Tx U : set, normal_space X Tx(∀C : set, closed_in X Tx CGdelta_simple X Tx C)U Tx∃f0 : set, continuous_map X Tx unit_interval unit_interval_topology f0 (∀x : set, x X Uapply_fun f0 x = 0) (∀x : set, x URlt 0 (apply_fun f0 x))
Proof:
Proof not loaded.
Theorem. (abs_SNo_add_minus_zero)
∀x : set, SNo xabs_SNo (add_SNo x (minus_SNo 0)) = abs_SNo x
Proof:
Proof not loaded.
Theorem. (finite_Union_of_finite_family)
∀F : set, finite F(∀A : set, A Ffinite A)finite ( F)
Proof:
Proof not loaded.
Theorem. (Nagata_Smirnov_metrization)
∀X Tx : set, regular_space X Txsigma_locally_finite_basis X Txmetrizable X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Axiom. (metric_fixed_radius_ball_cover_has_locally_finite_refinement) We take the following as an axiom:
∀X d n : set, metric_on X dn ω∃V : set, open_cover X (metric_topology X d) V locally_finite_family X (metric_topology X d) V refine_of V {open_ball X d x (inv_nat (ordsucc n))|xX}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define paracompact_space to be λX Tx ⇒ topology_on X Tx ∀U : set, open_cover X Tx U∃V : set, open_cover X Tx V locally_finite_family X Tx V refine_of V U of type setsetprop.
Theorem. (locally_finite_refinement)
∀X Tx U : set, paracompact_space X Txopen_cover X Tx U∃V : set, open_cover X Tx V locally_finite_family X Tx V
Proof:
Proof not loaded.
Theorem. (paracompact_Hausdorff_regular)
∀X Tx : set, paracompact_space X TxHausdorff_space X Txregular_space X Tx
Proof:
Proof not loaded.
Theorem. (paracompact_Hausdorff_normal)
∀X Tx : set, paracompact_space X TxHausdorff_space X Txnormal_space X Tx
Proof:
Proof not loaded.
Theorem. (closed_subspace_paracompact)
∀X Tx Y : set, paracompact_space X Txclosed_in X Tx Yparacompact_space Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Definition. We define sigma_locally_finite_family to be λX Tx F ⇒ topology_on X Tx ∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀G : set, G Famslocally_finite_family X Tx G) F = Fams of type setsetsetprop.
Theorem. (locally_finite_family_singleton)
∀X Tx A : set, topology_on X Txlocally_finite_family X Tx {A}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define closed_cover to be λX Tx C ⇒ (∀c : set, c Cclosed_in X Tx c) covers X C of type setsetsetprop.
Definition. We define Michael_cond41_3_1 to be λX Tx ⇒ ∀U : set, open_cover X Tx U∃V : set, open_cover X Tx V sigma_locally_finite_family X Tx V refine_of V U of type setsetprop.
Definition. We define Michael_cond41_3_2 to be λX Tx ⇒ ∀U : set, open_cover X Tx U∃V : set, covers X V locally_finite_family X Tx V refine_of V U of type setsetprop.
Definition. We define Michael_cond41_3_3 to be λX Tx ⇒ ∀U : set, open_cover X Tx U∃V : set, closed_cover X Tx V locally_finite_family X Tx V refine_of V U of type setsetprop.
Definition. We define Michael_cond41_3_4 to be λX Tx ⇒ ∀U : set, open_cover X Tx U∃V : set, open_cover X Tx V locally_finite_family X Tx V refine_of V U of type setsetprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Union_subfamily_locally_finite_closed_is_closed)
∀X Tx Fam S : set, locally_finite_family X Tx Fam(∀A : set, A Famclosed_in X Tx A)S Famclosed_in X Tx ( S)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (metric_open_cover_point_ball_submember)
∀X d U x : set, metric_on X dopen_cover X (metric_topology X d) Ux X∃u : set, u U ∃r : set, r R (Rlt 0 r open_ball X d x r u)
Proof:
Proof not loaded.
Theorem. (metric_open_cover_point_eps_ball_submember)
∀X d U x : set, metric_on X dopen_cover X (metric_topology X d) Ux X∃u : set, u U ∃N : set, N ω open_ball X d x (eps_ N) u
Proof:
Proof not loaded.
Theorem. (metric_open_cover_refine_by_balls)
∀X d U : set, metric_on X dopen_cover X (metric_topology X d) U∃B : set, open_cover X (metric_topology X d) B (∀b : set, b B∃xX, ∃rR, Rlt 0 r b = open_ball X d x r) refine_of B U
Proof:
Proof not loaded.
Theorem. (metric_spaces_regular)
∀X d : set, metric_on X dregular_space X (metric_topology X d)
Proof:
Proof not loaded.
Theorem. (metric_ball_cover_point_eps_submember)
∀X d B x : set, metric_on X dopen_cover X (metric_topology X d) B(∀b : set, b B∃cX, ∃rR, Rlt 0 r b = open_ball X d c r)x X∃b : set, b B x b ∃N : set, N ω open_ball X d x (eps_ N) b
Proof:
Proof not loaded.
Theorem. (metric_ball_open_cover_refine_by_eps_balls)
∀X d B : set, metric_on X dopen_cover X (metric_topology X d) B(∀b : set, b B∃cX, ∃rR, Rlt 0 r b = open_ball X d c r)∃V : set, open_cover X (metric_topology X d) V refine_of V B (∀v : set, v V∃x : set, x X ∃N : set, N ω v = open_ball X d x (eps_ N))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Axiom. (metric_eps_centers_for_sigma_ball_refinement_old) We take the following as an axiom:
∀X d V0 : set, metric_on X dopen_cover X (metric_topology X d) V0∃Centers : setset, (∀n : set, n ωeps_separated_set X d (Centers n) n (∀c : set, c Centers n∃v0 : set, v0 V0 open_ball X d c (eps_ (ordsucc (ordsucc n))) v0)) (∀x : set, x X∃n : set, n ω ∃c : set, c Centers n x open_ball X d c (eps_ (ordsucc (ordsucc n))))
Theorem. (metric_eps_centers_for_sigma_ball_refinement_old_sketch)
∀X d V0 : set, metric_on X dopen_cover X (metric_topology X d) V0∃Centers : setset, (∀n : set, n ωeps_separated_set X d (Centers n) n (∀c : set, c Centers n∃v0 : set, v0 V0 open_ball X d c (eps_ (ordsucc (ordsucc n))) v0)) (∀x : set, x X∃n : set, n ω ∃c : set, c Centers n x open_ball X d c (eps_ (ordsucc (ordsucc n))))
Proof:
Proof not loaded.
Theorem. (metric_ball_open_cover_has_sigma_locally_finite_refinement_core_old)
∀X d B : set, metric_on X dopen_cover X (metric_topology X d) B(∀b : set, b B∃xX, ∃rR, Rlt 0 r b = open_ball X d x r)∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀G : set, G Famslocally_finite_family X (metric_topology X d) G) ∃V : set, V = Fams open_cover X (metric_topology X d) V refine_of V B
Proof:
Proof not loaded.
Theorem. (metric_ball_open_cover_has_sigma_locally_finite_refinement_core_wo)
∀X d B : set, metric_on X dopen_cover X (metric_topology X d) B(∀b : set, b B∃xX, ∃rR, Rlt 0 r b = open_ball X d x r)∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀G : set, G Famslocally_finite_family X (metric_topology X d) G) ∃V : set, V = Fams open_cover X (metric_topology X d) V refine_of V B
Proof:
Proof not loaded.
Theorem. (metric_ball_open_cover_has_sigma_locally_finite_refinement_core)
∀X d B : set, metric_on X dopen_cover X (metric_topology X d) B(∀b : set, b B∃xX, ∃rR, Rlt 0 r b = open_ball X d x r)∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀G : set, G Famslocally_finite_family X (metric_topology X d) G) ∃V : set, V = Fams open_cover X (metric_topology X d) V refine_of V B
Proof:
Proof not loaded.
Theorem. (metric_ball_open_cover_has_sigma_locally_finite_refinement)
∀X d B : set, metric_on X dopen_cover X (metric_topology X d) B(∀b : set, b B∃xX, ∃rR, Rlt 0 r b = open_ball X d x r)∃V : set, open_cover X (metric_topology X d) V sigma_locally_finite_family X (metric_topology X d) V refine_of V B
Proof:
Proof not loaded.
Theorem. (metric_ball_open_cover_has_locally_finite_refinement)
∀X d B : set, metric_on X dopen_cover X (metric_topology X d) B(∀b : set, b B∃xX, ∃rR, Rlt 0 r b = open_ball X d x r)∃V : set, open_cover X (metric_topology X d) V locally_finite_family X (metric_topology X d) V refine_of V B
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (metric_paracompact)
∀X d : set, metric_on X dparacompact_space X (metric_topology X d)
Proof:
Proof not loaded.
Theorem. (metrizable_paracompact)
∀X Tx : set, metrizable X Txparacompact_space X Tx
Proof:
Proof not loaded.
Theorem. (regular_Lindelof_paracompact)
∀X Tx : set, regular_space X TxLindelof_space X Txparacompact_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (shrinking_lemma_41_6)
∀X Tx U : set, paracompact_space X TxHausdorff_space X Txopen_cover X Tx U∃V : set, open_cover X Tx V locally_finite_family X Tx V refine_of V U ∀v : set, v V∃u : set, u U closure_of X Tx v u
Proof:
Proof not loaded.
Theorem. (shrinking_lemma_41_6_twice)
∀X Tx U : set, paracompact_space X TxHausdorff_space X Txopen_cover X Tx U∃V W : set, open_cover X Tx V locally_finite_family X Tx V refine_of V U (∀v : set, v V∃u : set, u U closure_of X Tx v u) open_cover X Tx W locally_finite_family X Tx W refine_of W V (∀w : set, w W∃v : set, v V closure_of X Tx w v)
Proof:
Proof not loaded.
Theorem. (paracompact_Hausdorff_bump_cover_dominated)
∀X Tx U : set, paracompact_space X TxHausdorff_space X Txopen_cover X Tx U∃V P : set, open_cover X Tx V locally_finite_family X Tx V refine_of V U P function_space X R (∀f : set, f Pcontinuous_map X Tx R R_standard_topology f) (∀f x : set, f Px Xapply_fun f x unit_interval) (∀f : set, f P∃u : set, u U support_of X Tx f u) (∀x : set, x X∃f : set, f P apply_fun f x = 1) (∀x : set, x X∃N : set, N Tx x N ∃F0 : set, finite F0 F0 P ∀f : set, f Psupport_of X Tx f N Emptyf F0)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (paracompact_Hausdorff_locally_finite_bounded_function_aux)
∀X Tx C eps : set, paracompact_space X TxHausdorff_space X Txlocally_finite_family X Tx CC 𝒫 X(∀c : set, c Capply_fun eps c R Rlt 0 (apply_fun eps c))normal_space X Txtopology_on X Tx∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x XRlt 0 (apply_fun f x)) (∀c x : set, c Cx cRle (apply_fun f x) (apply_fun eps c))
Proof:
Proof not loaded.
Theorem. (paracompact_Hausdorff_locally_finite_bounded_function)
∀X Tx C eps : set, paracompact_space X TxHausdorff_space X Txlocally_finite_family X Tx CC 𝒫 X(∀c : set, c Capply_fun eps c R Rlt 0 (apply_fun eps c))∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x XRlt 0 (apply_fun f x)) (∀c x : set, c Cx cRle (apply_fun f x) (apply_fun eps c))
Proof:
Proof not loaded.
Theorem. (Smirnov_metrization)
∀X Tx : set, regular_space X Txlocally_finite_basis X Txmetrizable X Tx
Proof:
Proof not loaded.
Definition. We define discrete_metric to be λX ⇒ graph (setprod X X) (λp : setIf_i (p 0 = p 1) 0 1) of type setset.
Theorem. (discrete_metric_apply)
∀X x y : set, x Xy Xapply_fun (discrete_metric X) (x,y) = If_i (x = y) 0 1
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (open_ball_discrete_radius1_eq_singleton)
∀X x : set, x Xopen_ball X (discrete_metric X) x 1 = {x}
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define euclidean_space_extend_to_Romega to be λn f ⇒ graph ω (λi : setIf_i (i n) (apply_fun f i) 0) of type setsetset.
Definition. We define euclidean_metric to be λn ⇒ graph (setprod (euclidean_space n) (euclidean_space n)) (λp : setRomega_D_metric_value (euclidean_space_extend_to_Romega n (p 0)) (euclidean_space_extend_to_Romega n (p 1))) of type setset.
Theorem. (euclidean_space_coord_in_R)
∀n f i : set, f euclidean_space ni napply_fun f i R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define bounded_product_metric to be Romega_D_metric of type set.
Proof:
Proof not loaded.
Definition. We define omega_strictly_increasing to be λf ⇒ ∀m n : set, m ωn ωm napply_fun f m apply_fun f n of type setprop.
Definition. We define subsequence_of to be λseq subseq ⇒ ∃f : set, total_function_on f ω ω functional_graph f graph_domain_subset f ω omega_strictly_increasing f subseq = compose_fun ω f seq of type setsetprop.
Theorem. (exists_twofold_small_eps)
∀eps0 : set, eps0 RRlt 0 eps0∃eps1 : set, eps1 R Rlt 0 eps1 Rlt (add_SNo eps1 eps1) eps0
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Cauchy_with_convergent_subsequence_converges)
∀X d seq x : set, metric_on X dcauchy_sequence X d seq(∃subseq : set, subsequence_of seq subseq converges_to X (metric_topology X d) subseq x)converges_to X (metric_topology X d) seq x
Proof:
Proof not loaded.
Definition. We define product_coordinate_sequence to be λseq j ⇒ graph ω (λn : setapply_fun (apply_fun seq n) j) of type setsetset.
Proof:
Proof not loaded.
Theorem. (R_bounded_metric_apply)
∀x y : set, x Ry Rapply_fun R_bounded_metric (x,y) = R_bounded_distance x y
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (cauchy_R_bounded_metric_abs_tail)
∀seq eps : set, cauchy_sequence R R_bounded_metric seqeps RRlt 0 epsRlt eps 1∃N : set, N ω ∀m n : set, m ωn ωN mN nabs_SNo (add_SNo (apply_fun seq m) (minus_SNo (apply_fun seq n))) < eps
Proof:
Proof not loaded.
Theorem. (open_ball_R_bounded_metric_abs)
∀x r y : set, x Rr RRlt 0 rRlt r 1(y open_ball R R_bounded_metric x r (y R Rlt (R_bounded_distance x y) r))
Proof:
Proof not loaded.
Theorem. (open_ball_R_bounded_metric_eq_open_interval)
∀c r : set, c Rr RRlt 0 rRlt r 1open_ball R R_bounded_metric c r = open_interval (add_SNo c (minus_SNo r)) (add_SNo c r)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (open_ball_R_bounded_metric_eq_R_if_1_lt)
∀c r : set, c Rr RRlt 1 ropen_ball R R_bounded_metric c r = R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (graph_omega_to_R_in_Romega_space)
∀g : setset, (∀i : set, i ωg i R)graph ω g R_omega_space
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (abs_Cauchy_sequence_converges_R_standard_topology)
∀seq : set, sequence_on seq R(∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀m n : set, m ωn ωN mN nabs_SNo (add_SNo (apply_fun seq m) (minus_SNo (apply_fun seq n))) < eps)∃x : set, converges_to R R_standard_topology seq x
Proof:
Proof not loaded.
Theorem. (abs_Cauchy_sequence_converges_metric_topology_R_bounded_metric)
∀seq : set, sequence_on seq R(∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀m n : set, m ωn ωN mN nabs_SNo (add_SNo (apply_fun seq m) (minus_SNo (apply_fun seq n))) < eps)∃x : set, converges_to R (metric_topology R R_bounded_metric) seq x
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define unit_square to be setprod unit_interval unit_interval of type set.
Definition. We define unit_square_topology to be product_topology unit_interval unit_interval_topology unit_interval unit_interval_topology of type set.
Proof:
Proof not loaded.
Definition. We define sequentially_compact to be λX Tx ⇒ topology_on X Tx ∀seq : set, sequence_on seq X∃subseq : set, ∃x : set, subsequence_of seq subseq converges_to X Tx subseq x of type setsetprop.
Theorem. (compact_metric_sequence_has_convergent_subsequence)
∀X d seq : set, metric_on X dcompact_space X (metric_topology X d)sequence_on seq X∃subseq : set, ∃x : set, subsequence_of seq subseq converges_to X (metric_topology X d) subseq x
Proof:
Proof not loaded.
Definition. We define lebesgue_number_metric to be λX d Fam delta ⇒ delta R Rlt 0 delta ∀x : set, x X∃U : set, U Fam open_ball X d x delta U of type setsetsetsetprop.
Definition. We define finite_ball_cover_metric to be λX d delta F ⇒ finite F F X X (cFopen_ball X d c delta) of type setsetsetsetprop.
Theorem. (lebesgue_and_ball_cover_imply_finite_subcover)
∀X d Fam delta : set, metric_on X dopen_cover_of X (metric_topology X d) Famlebesgue_number_metric X d Fam delta(∃F : set, finite_ball_cover_metric X d delta F)has_finite_subcover X (metric_topology X d) Fam
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define pointwise_subbasis to be λX Tx Y Ty ⇒ {S𝒫 (function_space X Y)|∃x U : set, x X U Ty S = {ffunction_space X Y|apply_fun f x U}} of type setsetsetsetset.
Definition. We define pointwise_convergence_topology to be λX Tx Y Ty ⇒ generated_topology_from_subbasis (function_space X Y) ((pointwise_subbasis X Tx Y Ty) {function_space X Y}) of type setsetsetsetset.
Definition. We define continuous_function_space to be λX Tx Y Ty ⇒ {ffunction_space X Y|continuous_map X Tx Y Ty f} of type setsetsetsetset.
Proof:
Proof not loaded.
Theorem. (pointwise_eval_continuous)
∀X Tx Y Ty x : set, topology_on X Txtopology_on Y Tyx Xcontinuous_map (function_space X Y) (pointwise_convergence_topology X Tx Y Ty) Y Ty (graph (function_space X Y) (λf : setapply_fun f x))
Proof:
Proof not loaded.
Theorem. (continuous_map_image_of_closure_subset_closure_of_image)
∀X Tx Y Ty f A x : set, topology_on X Txtopology_on Y Tycontinuous_map X Tx Y Ty fA Xx closure_of X Tx Aapply_fun f x closure_of Y Ty (Repl A (λa : setapply_fun f a))
Proof:
Proof not loaded.
Theorem. (pointwise_closure_implies_coordinate_in_closure_of_values)
∀X Tx Y Ty F a g : set, topology_on X Txtopology_on Y Tya XF function_space X Yg closure_of (function_space X Y) (pointwise_convergence_topology X Tx Y Ty) Fapply_fun g a closure_of Y Ty (Repl F (λf0 : setapply_fun f0 a))
Proof:
Proof not loaded.
Definition. We define compact_open_subbasis to be λX Tx Y Ty ⇒ {S𝒫 (function_space X Y)|∃K U : set, compact_space K (subspace_topology X Tx K) K X U Ty S = {ffunction_space X Y|K preimage_of X f U}} of type setsetsetsetset.
Definition. We define compact_convergence_topology to be λX Tx Y Ty ⇒ generated_topology_from_subbasis (function_space X Y) (compact_open_subbasis X Tx Y Ty) of type setsetsetsetset.
Theorem. (compact_open_subbasis_is_subbasis)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tysubbasis_on (function_space X Y) (compact_open_subbasis X Tx Y Ty)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (compact_convergence_eval_continuous)
∀X Tx Y Ty x : set, topology_on X Txtopology_on Y Tyx Xcontinuous_map (function_space X Y) (compact_convergence_topology X Tx Y Ty) Y Ty (graph (function_space X Y) (λf : setapply_fun f x))
Proof:
Proof not loaded.
Definition. We define compact_open_topology_C to be λX Tx Y Ty ⇒ subspace_topology (function_space X Y) (compact_convergence_topology X Tx Y Ty) (continuous_function_space X Tx Y Ty) of type setsetsetsetset.
Theorem. (continuous_function_space_sub)
∀X Tx Y Ty : set, continuous_function_space X Tx Y Ty function_space X Y
Proof:
Proof not loaded.
Theorem. (compact_open_topology_C_is_topology)
∀X Tx Y Ty : set, topology_on X Txtopology_on Y Tytopology_on (continuous_function_space X Tx Y Ty) (compact_open_topology_C X Tx Y Ty)
Proof:
Proof not loaded.
Definition. We define compact_open_evaluation_map to be λX Tx Y Ty ⇒ graph (setprod X (continuous_function_space X Tx Y Ty)) (λp : setapply_fun (p 1) (p 0)) of type setsetsetsetset.
Proof:
Proof not loaded.
Theorem. (tube_lemma_compact_first)
∀X Tx Y Ty K : set, topology_on X Txtopology_on Y Tycompact_space K (subspace_topology X Tx K)K X∀y0 : set, y0 Y∀N : set, N product_topology X Tx Y Ty setprod K {y0} N∃V : set, V Ty y0 V setprod K V N
Proof:
Proof not loaded.
Theorem. (compact_open_induced_map_continuous)
∀X Tx Y Ty Z Tz f : set, topology_on X Txtopology_on Y Tytopology_on Z Tzcontinuous_map (setprod X Z) (product_topology X Tx Z Tz) Y Ty f∃F : set, continuous_map Z Tz (continuous_function_space X Tx Y Ty) (compact_open_topology_C X Tx Y Ty) F
Proof:
Proof not loaded.
Definition. We define compact_convergence_subbasis_metric to be λX Tx Y dY ⇒ {S𝒫 (continuous_function_space X Tx Y (metric_topology Y dY))|∃C f eps : set, compact_space C (subspace_topology X Tx C) C X f continuous_function_space X Tx Y (metric_topology Y dY) eps R Rlt 0 eps S = {gcontinuous_function_space X Tx Y (metric_topology Y dY)|∀x : set, x CRlt (apply_fun dY (apply_fun g x,apply_fun f x)) eps}} of type setsetsetsetset.
Definition. We define compact_convergence_topology_metric_C to be λX Tx Y dY ⇒ generated_topology_from_subbasis (continuous_function_space X Tx Y (metric_topology Y dY)) ((compact_convergence_subbasis_metric X Tx Y dY) {continuous_function_space X Tx Y (metric_topology Y dY)}) of type setsetsetsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (closure_open_ball_sub_open_ball_add_radius)
∀Y d y r : set, metric_on Y dy Yr RRlt 0 rclosure_of Y (metric_topology Y d) (open_ball Y d y r) open_ball Y d y (add_SNo r r)
Proof:
Proof not loaded.
Theorem. (closure_preimage_open_ball_sub_preimage_open_ball_add_radius)
∀X Tx Y d f y r : set, topology_on X Txmetric_on Y dcontinuous_map X Tx Y (metric_topology Y d) fy Yr RRlt 0 rclosure_of X Tx (preimage_of X f (open_ball Y d y r)) preimage_of X f (open_ball Y d y (add_SNo r r))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Ascoli_F_at to be λX Y a F ⇒ {apply_fun f a|fF} of type setsetsetsetset.
Theorem. (Ascoli_F_at_def)
∀X Y a F : set, Ascoli_F_at X Y a F = Repl F (λf : setapply_fun f a)
Proof:
Proof not loaded.
Definition. We define Ascoli_pointwise_compact_closure to be λX Y dY F ⇒ ∀a : set, a Xcompact_space (closure_of Y (metric_topology Y dY) (Ascoli_F_at X Y a F)) (subspace_topology Y (metric_topology Y dY) (closure_of Y (metric_topology Y dY) (Ascoli_F_at X Y a F))) of type setsetsetsetprop.
Definition. We define equicontinuous_family to be λX Tx Y dY F ⇒ topology_on X Tx metric_on Y dY F continuous_function_space X Tx Y (metric_topology Y dY) ∀x0 : set, x0 X∀eps : set, eps R Rlt 0 eps∃U : set, U Tx x0 U ∀f : set, f F∀x : set, x Xx URlt (apply_fun dY (apply_fun f x,apply_fun f x0)) eps of type setsetsetsetsetprop.
Definition. We define relatively_compact_in_compact_convergence to be λX Tx Y dY F ⇒ F continuous_function_space X Tx Y (metric_topology Y dY) ∃H : set, F H H continuous_function_space X Tx Y (metric_topology Y dY) compact_space H (subspace_topology (continuous_function_space X Tx Y (metric_topology Y dY)) (compact_convergence_topology_metric_C X Tx Y dY) H) of type setsetsetsetsetprop.
Definition. We define Ascoli_g_pointwise_closure to be λX Tx Y dY F ⇒ closure_of (function_space X Y) (pointwise_convergence_topology X Tx Y (metric_topology Y dY)) F of type setsetsetsetsetset.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Ascoli_g_pointwise_closure_coord)
∀X Tx Y dY F g a : set, topology_on X Txmetric_on Y dYF continuous_function_space X Tx Y (metric_topology Y dY)g Ascoli_g_pointwise_closure X Tx Y dY Fa Xapply_fun g a closure_of Y (metric_topology Y dY) (Ascoli_F_at X Y a F)
Proof:
Proof not loaded.
Theorem. (Ascoli_g_pointwise_closure_equicontinuous_bound)
∀X Tx Y dY F x0 eps : set, topology_on X Txmetric_on Y dYF continuous_function_space X Tx Y (metric_topology Y dY)equicontinuous_family X Tx Y dY Fx0 Xeps R Rlt 0 eps∃U : set, U Tx x0 U ∀g : set, g Ascoli_g_pointwise_closure X Tx Y dY F∀x : set, x Xx URlt (apply_fun dY (apply_fun g x,apply_fun g x0)) eps
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Ascoli_g_pointwise_closure_continuous_map)
∀X Tx Y dY F g : set, topology_on X Txmetric_on Y dYF continuous_function_space X Tx Y (metric_topology Y dY)equicontinuous_family X Tx Y dY Fg Ascoli_g_pointwise_closure X Tx Y dY Fcontinuous_map X Tx Y (metric_topology Y dY) g
Proof:
Proof not loaded.
Theorem. (Ascoli_g_pointwise_closure_sub_CXY)
∀X Tx Y dY F g : set, topology_on X Txmetric_on Y dYF continuous_function_space X Tx Y (metric_topology Y dY)equicontinuous_family X Tx Y dY Fg Ascoli_g_pointwise_closure X Tx Y dY Fg continuous_function_space X Tx Y (metric_topology Y dY)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Ascoli_XiKa to be λX Y Ty F ⇒ graph X (λa : set(closure_of Y Ty (Ascoli_F_at X Y a F),subspace_topology Y Ty (closure_of Y Ty (Ascoli_F_at X Y a F)))) of type setsetsetsetset.
Theorem. (Ascoli_XiKa_set)
∀X Y Ty F a : set, a Xspace_family_set (Ascoli_XiKa X Y Ty F) a = closure_of Y Ty (Ascoli_F_at X Y a F)
Proof:
Proof not loaded.
Theorem. (Ascoli_XiKa_topology)
∀X Y Ty F a : set, a Xspace_family_topology (Ascoli_XiKa X Y Ty F) a = subspace_topology Y Ty (closure_of Y Ty (Ascoli_F_at X Y a F))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (compact_subspace_CXY_equicontinuous_per_ball)
∀X Tx Y dY H x0 eps r Ty eval0 Img0 FamBalls Gballs : set, topology_on X Txmetric_on Y dYTy = metric_topology Y dYlocally_compact X TxHausdorff_space X TxH continuous_function_space X Tx Y (metric_topology Y dY)compact_space H (subspace_topology (continuous_function_space X Tx Y (metric_topology Y dY)) (compact_open_topology_C X Tx Y (metric_topology Y dY)) H)eval0 = graph (function_space X Y) (λf : setapply_fun f x0)x0 Xeps RRlt 0 epsr RRlt 0 rRlt (add_SNo (add_SNo r r) (add_SNo r r)) epsImg0 = image_of_fun eval0 HFamBalls = {open_ball Y dY y r|yImg0}Gballs FamBalls∀b : set, b Gballs∃U : set, U Tx x0 U ∀f : set, f Happly_fun eval0 f closure_of Y Ty b∀x1 : set, x1 Xx1 URlt (apply_fun dY (apply_fun f x1,apply_fun f x0)) eps
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (apply_fun_apply_fun_graph)
∀A : set, ∀g : setset, ∀a b : set, a Aapply_fun (apply_fun (graph A g) a) b = apply_fun (g a) b
Proof:
Proof not loaded.
Theorem. (apply_fun_congr)
∀f g x : set, f = gapply_fun f x = apply_fun g x
Proof:
Proof not loaded.
Theorem. (directed_set_finite_upper_bound)
∀J le F : set, directed_set J lefinite FF J∃k : set, k J ∀i : set, i F(i,k) le
Proof:
Proof not loaded.
Theorem. (Ascoli_theorem_47_1a_diag_upgrade)
∀X Tx Y dY F Hcand Thcand N J le net : set, topology_on X Txmetric_on Y dYHcand continuous_function_space X Tx Y (metric_topology Y dY)Hcand = Ascoli_g_pointwise_closure X Tx Y dY FThcand = subspace_topology (continuous_function_space X Tx Y (metric_topology Y dY)) (compact_convergence_topology_metric_C X Tx Y dY) Hcandtopology_on Hcand ThcandF continuous_function_space X Tx Y (metric_topology Y dY)equicontinuous_family X Tx Y dY FAscoli_pointwise_compact_closure X Y dY FN = net_pack J le netdirected_set J letotal_function_on net J Hcandfunctional_graph netgraph_domain_subset net J(∀a : set, a X∃Ni Si x : set, net_pack_in_space (closure_of Y (metric_topology Y dY) (Ascoli_F_at X Y a F)) Ni Ni = net_pack J le (graph J (λj : setapply_fun (apply_fun net j) a)) subnet_pack_of_in (closure_of Y (metric_topology Y dY) (Ascoli_F_at X Y a F)) Ni Si net_pack_converges (closure_of Y (metric_topology Y dY) (Ascoli_F_at X Y a F)) (subspace_topology Y (metric_topology Y dY) (closure_of Y (metric_topology Y dY) (Ascoli_F_at X Y a F))) Si x)∃S x : set, subnet_pack_of_in Hcand N S net_pack_converges Hcand Thcand S x
Proof:
Proof not loaded.
Theorem. (Ascoli_theorem_47_1a)
∀X Tx Y dY F : set, topology_on X Txmetric_on Y dYF continuous_function_space X Tx Y (metric_topology Y dY)equicontinuous_family X Tx Y dY FAscoli_pointwise_compact_closure X Y dY Frelatively_compact_in_compact_convergence X Tx Y dY F
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define intersection_over_family to be λX Fam ⇒ intersection_of_family X Fam of type setsetset.
Definition. We define Baire_space to be λX Tx ⇒ topology_on X Tx ∀U : set, U Txcountable_set U(∀u : set, u Uu Tx dense_in u X Tx)dense_in (intersection_over_family X U) X Tx of type setsetprop.
Definition. We define Baire_space_closed to be λX Tx ⇒ topology_on X Tx ∀Fam : set, countable_set Fam(∀A : set, A Famclosed_in X Tx A interior_of X Tx A = Empty)interior_of X Tx ( Fam) = Empty of type setsetprop.
Theorem. (union_of_complements_eq_complement_of_intersection_over_family)
∀X U : set, (∀u : set, u Uu X) {X u|uU} = X (intersection_over_family X U)
Proof:
Proof not loaded.
Theorem. (intersection_of_complements_eq_complement_of_Union)
∀X Fam : set, (∀A : set, A FamA X)intersection_over_family X {X A|AFam} = X Fam
Proof:
Proof not loaded.
Theorem. (Baire_space_closed_imp)
∀X Tx : set, Baire_space_closed X TxBaire_space X Tx
Proof:
Proof not loaded.
Theorem. (Baire_space_imp_closed)
∀X Tx : set, Baire_space X TxBaire_space_closed X Tx
Proof:
Proof not loaded.
Theorem. (Baire_space_closed_iff)
∀X Tx : set, (Baire_space_closed X Tx Baire_space X Tx)
Proof:
Proof not loaded.
Theorem. (Baire_space_dense_Gdelta)
∀X Tx : set, Baire_space X Tx∀U : set, U Txcountable_set U(∀u : set, u Uu Tx dense_in u X Tx)dense_in (intersection_over_family X U) X Tx
Proof:
Proof not loaded.
Theorem. (not_subset_ex_elem)
∀A B : set, ¬ (B A)∃x : set, x B x A
Proof:
Proof not loaded.
Theorem. (subset_of_set_from_closure_sub)
∀X Tx A B : set, topology_on X TxA Xclosure_of X Tx A BA B
Proof:
Proof not loaded.
Theorem. (baire_step_metric_ball)
∀X d A B x : set, metric_on X dx XB metric_topology X dx Bclosed_in X (metric_topology X d) Ainterior_of X (metric_topology X d) A = Empty∃x1 : set, ∃V1 : set, ∃N1 : set, (x1 B x1 A) (V1 metric_topology X d x1 V1 closure_of X (metric_topology X d) V1 (B (X A))) (N1 ω open_ball X d x1 (eps_ N1) V1)
Proof:
Proof not loaded.
Theorem. (baire_step_metric_ball_closure)
∀X d A B x : set, metric_on X dx XB metric_topology X dx Bclosed_in X (metric_topology X d) Ainterior_of X (metric_topology X d) A = Empty∃x1 : set, ∃N1 : set, ∃B1 : set, (x1 B x1 A) (B1 = open_ball X d x1 (eps_ N1)) (B1 metric_topology X d x1 B1 closure_of X (metric_topology X d) B1 (B (X A)))
Proof:
Proof not loaded.
Theorem. (baire_step_metric_ball_bounded_closure)
∀X d A B x a : set, metric_on X dx XB metric_topology X dx Bclosed_in X (metric_topology X d) Ainterior_of X (metric_topology X d) A = Emptya RRlt 0 a∃x1 : set, ∃r1 : set, ∃B1 : set, (x1 B x1 A) (r1 R Rlt 0 r1 Rlt r1 a) (B1 = open_ball X d x1 r1) (B1 metric_topology X d x1 B1 closure_of X (metric_topology X d) B1 (B (X A)))
Proof:
Proof not loaded.
Theorem. (baire_step_metric_ball_eps_bounded_closure)
∀X d A B x n : set, metric_on X dx XB metric_topology X dx Bclosed_in X (metric_topology X d) Ainterior_of X (metric_topology X d) A = Emptyn ω∃x1 : set, ∃r1 : set, ∃B1 : set, (x1 B x1 A) (r1 R Rlt 0 r1 Rlt r1 (eps_ (ordsucc n))) (B1 = open_ball X d x1 r1) (B1 metric_topology X d x1 B1 closure_of X (metric_topology X d) B1 (B (X A)))
Proof:
Proof not loaded.
Theorem. (baire_complete_metric_avoid_closed_seq)
∀X d U0 x0 : set, ∀An : setset, complete_metric_space X d(∀n : set, n ωclosed_in X (metric_topology X d) (An n) interior_of X (metric_topology X d) (An n) = Empty)U0 metric_topology X dx0 Xx0 U0∃x : set, x U0 ∀n : set, n ωx (An n)
Proof:
Proof not loaded.
Theorem. (Baire_category_complete_metric_closed_core)
∀X d Fam : set, complete_metric_space X dcountable_set Fam(∀A : set, A Famclosed_in X (metric_topology X d) A interior_of X (metric_topology X d) A = Empty)interior_of X (metric_topology X d) ( Fam) = Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (baire_step_regular_open_closure)
∀X Tx A B x : set, regular_space X Txx XB Txx Bclosed_in X Tx Ainterior_of X Tx A = Empty∃x1 : set, ∃B1 : set, (x1 B x1 A) (B1 Tx x1 B1 closure_of X Tx B1 (B (X A)))
Proof:
Proof not loaded.
Theorem. (accumulation_point_on_in_closure_of_eventually_terms)
∀X Tx net J le A x i0 : set, accumulation_point_of_net_on X Tx net J le xA Xi0 J(∀i : set, i J(i0,i) leapply_fun net i A)x closure_of X Tx A
Proof:
Proof not loaded.
Theorem. (baire_compact_Hausdorff_avoid_closed_seq)
∀X Tx U0 x0 : set, ∀An : setset, compact_space X TxHausdorff_space X Tx(∀n : set, n ωclosed_in X Tx (An n) interior_of X Tx (An n) = Empty)U0 Txx0 Xx0 U0∃x : set, x U0 ∀n : set, n ωx (An n)
Proof:
Proof not loaded.
Theorem. (Baire_category_compact_Hausdorff_closed_core)
∀X Tx Fam : set, compact_space X TxHausdorff_space X Txcountable_set Fam(∀A : set, A Famclosed_in X Tx A interior_of X Tx A = Empty)interior_of X Tx ( Fam) = Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (Baire_category_compact_Hausdorff)
∀X Tx : set, compact_space X TxHausdorff_space X TxBaire_space X Tx
Proof:
Proof not loaded.
Theorem. (Baire_category_theorem)
∀X Tx : set, (compact_space X Tx Hausdorff_space X Tx) (∃d : set, complete_metric_space X d Tx = metric_topology X d)Baire_space X Tx
Proof:
Proof not loaded.
Theorem. (Baire_open_subspace)
∀X Tx Y : set, Baire_space X Txopen_in X Tx YBaire_space Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Definition. We define A_N_eps to be λX Y d fn N eps ⇒ {xX|∀n : set, n ωN n∀m : set, m ωN mRle (apply_fun d (apply_fun (apply_fun fn n) x,apply_fun (apply_fun fn m) x)) eps} of type setsetsetsetsetsetset.
Theorem. (A_N_eps_monotone)
∀X Y d fn N eps1 eps2 : set, eps1 Reps2 RRle eps1 eps2A_N_eps X Y d fn N eps1 A_N_eps X Y d fn N eps2
Proof:
Proof not loaded.
Theorem. (metric_distance_above_has_product_ball)
∀Y d a p : set, metric_on_total Y da Rp preimage_of (setprod Y Y) d (open_ray_upper R a)∃r : set, r R Rlt 0 r rectangle_set (open_ball Y d (p 0) r) (open_ball Y d (p 1) r) preimage_of (setprod Y Y) d (open_ray_upper R a)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (metric_distance_below_has_product_ball)
∀Y d b p : set, metric_on_total Y db Rp preimage_of (setprod Y Y) d (open_ray_lower R b)∃r : set, r R Rlt 0 r rectangle_set (open_ball Y d (p 0) r) (open_ball Y d (p 1) r) preimage_of (setprod Y Y) d (open_ray_lower R b)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (A_N_eps_closed_stub)
∀X Tx Y d fn N eps : set, topology_on X Txmetric_on_total Y d(∀n : set, n ωcontinuous_map X Tx Y (metric_topology Y d) (apply_fun fn n))N ωeps Rclosed_in X Tx (A_N_eps X Y d fn N eps)
Proof:
Proof not loaded.
Definition. We define U_eps to be λX Tx Y d fn eps ⇒ {interior_of X Tx (A_N_eps X Y d fn N eps)|Nω} of type setsetsetsetsetsetset.
Theorem. (U_eps_monotone)
∀X Tx Y d fn eps1 eps2 : set, topology_on X Txeps1 Reps2 RRle eps1 eps2U_eps X Tx Y d fn eps1 U_eps X Tx Y d fn eps2
Proof:
Proof not loaded.
Theorem. (U_epsE_open_subset_A_N)
∀X Tx Y d fn eps x : set, topology_on X Txx U_eps X Tx Y d fn eps∃N : set, N ω ∃U : set, U Tx x U U A_N_eps X Y d fn N eps
Proof:
Proof not loaded.
Theorem. (pointwise_limit_metric_imp_cover_A_N_eps_stub)
∀X Y d fn f eps : set, metric_on_total Y d(∀n : set, n ωfunction_on (apply_fun fn n) X Y)function_on f X Ypointwise_limit_metric X Y d fn feps RRlt 0 eps∀x : set, x X∃N : set, N ω x A_N_eps X Y d fn N eps
Proof:
Proof not loaded.
Theorem. (U_eps_open_dense_stub)
∀X Tx Y d fn eps : set, Baire_space X Txmetric_on_total Y d(∀n : set, n ωcontinuous_map X Tx Y (metric_topology Y d) (apply_fun fn n))(∀N : set, N ωclosed_in X Tx (A_N_eps X Y d fn N eps))(∀x : set, x X∃N : set, N ω x A_N_eps X Y d fn N eps)eps RRlt 0 epsopen_in X Tx (U_eps X Tx Y d fn eps) dense_in (U_eps X Tx Y d fn eps) X Tx
Proof:
Proof not loaded.
Theorem. (exists_fourfold_small_eps)
∀eps0 : set, eps0 RRlt 0 eps0∃eps1 : set, eps1 R Rlt 0 eps1 Rlt (add_SNo (add_SNo eps1 eps1) (add_SNo eps1 eps1)) eps0
Proof:
Proof not loaded.
Theorem. (pointwise_limit_continuity_points_dense)
∀X Tx Y d fn f : set, metric_on_total Y d(∀n : set, n ωcontinuous_map X Tx Y (metric_topology Y d) (apply_fun fn n))function_on f X Ypointwise_limit_metric X Y d fn fBaire_space X Txdense_in {xX|continuous_at_map X Tx Y (metric_topology Y d) f x} X Tx
Proof:
Proof not loaded.
Definition. We define differentiable_at to be λf x ⇒ function_on f unit_interval R x unit_interval ∃L : set, L R ∀eps : set, eps RRlt 0 eps∃delta : set, delta R Rlt 0 delta ∀h : set, h R¬ (h = 0)Rlt 0 (Abs h)Rlt (Abs h) delta(add_SNo x h) unit_intervalRlt (Abs (add_SNo (div_SNo (add_SNo (apply_fun f (add_SNo x h)) (minus_SNo (apply_fun f x))) h) (minus_SNo L))) eps of type setsetprop.
Definition. We define nowhere_differentiable to be λf ⇒ function_on f unit_interval R ∀x : set, x unit_interval¬ differentiable_at f x of type setprop.
Definition. We define I_topology to be unit_interval_topology of type set.
Proof:
Proof not loaded.
Definition. We define continuous_real_on_I to be λf ⇒ continuous_map unit_interval I_topology R R_standard_topology f of type setprop.
Definition. We define C_I_R to be {ffunction_space unit_interval R|continuous_real_on_I f} of type set.
Axiom. (theorem_49_1_nowhere_differentiable_approx) We take the following as an axiom:
Definition. We define diffquot_forward_abs to be λf x h ⇒ Abs (div_SNo (add_SNo (apply_fun f (add_SNo x h)) (minus_SNo (apply_fun f x))) h) of type setsetsetset.
Definition. We define diffquot_backward_abs to be λf x h ⇒ Abs (div_SNo (add_SNo (apply_fun f (add_SNo x (minus_SNo h))) (minus_SNo (apply_fun f x))) (minus_SNo h)) of type setsetsetset.
Definition. We define Delta_gt to be λf x h n ⇒ (add_SNo x h unit_interval Rlt n (diffquot_forward_abs f x h)) (add_SNo x (minus_SNo h) unit_interval Rlt n (diffquot_backward_abs f x h)) of type setsetsetsetprop.
Definition. We define U_n to be λn ⇒ {fC_I_R|n ω 2 n ∃h : set, h R Rlt 0 h Rle h (div_SNo 1 n) ∀x : set, x unit_intervalDelta_gt f x h n} of type setset.
Proof:
Proof not loaded.
Definition. We define cardinality_exact to be λS n ⇒ ordinal n equip S n of type setsetprop.
Definition. We define cardinality_at_most to be λS n ⇒ ordinal n ∃k : set, ordinal k k n equip S k of type setsetprop.
Theorem. (finite_ordinal_subset_equip_subordinal)
∀n S : set, nat_p nS n∃m : set, nat_p m (m n equip S m)
Proof:
Proof not loaded.
Theorem. (cardinality_at_most_mono_subset_finite)
∀S1 S2 n : set, n ωS1 S2cardinality_at_most S2 ncardinality_at_most S1 n
Proof:
Proof not loaded.
Theorem. (cardinality_at_most_equip_left)
∀S1 S2 n : set, equip S1 S2cardinality_at_most S2 ncardinality_at_most S1 n
Proof:
Proof not loaded.
Theorem. (cardinality_at_most_image_finite)
∀S n : set, ∀f : setset, n ωcardinality_at_most S (ordsucc n)cardinality_at_most {f x|xS} (ordsucc n)
Proof:
Proof not loaded.
Definition. We define collection_has_order_at_m_plus_one to be λX A m ⇒ ordinal m (∃x : set, x X ∃Fam : set, Fam A finite Fam cardinality_exact Fam (ordsucc m) ∀U : set, U Famx U) ∀x : set, x Xcardinality_at_most {UA|x U} (ordsucc m) of type setsetsetprop.
Definition. We define collection_has_order_at_most_m_plus_one to be λX A m ⇒ ordinal m ∀x : set, x Xcardinality_at_most {UA|x U} (ordsucc m) of type setsetsetprop.
Definition. We define refines_cover to be λB A ⇒ ∀U : set, U B∃V : set, V A U V of type setsetprop.
Theorem. (refines_cover_ref)
∀A : set, refines_cover A A
Proof:
Proof not loaded.
Theorem. (refines_cover_tra)
∀A B C : set, refines_cover C Brefines_cover B Arefines_cover C A
Proof:
Proof not loaded.
Theorem. (eq_subst_mem)
∀x y S : set, x = yy Sx S
Proof:
Proof not loaded.
Theorem. (eq_subst_mem_rev)
∀x y S : set, x = yx Sy S
Proof:
Proof not loaded.
Definition. We define ambient_open_of_subspace_open to be λX Tx Y U ⇒ Eps_i (λV : setV Tx U = V Y) of type setsetsetsetset.
Proof:
Proof not loaded.
Definition. We define covering_dimension to be λX Tx n ⇒ topology_on X Tx n ω ∀A : set, open_cover_of X Tx A∃B : set, open_cover_of X Tx B refines_cover B A collection_has_order_at_most_m_plus_one X B n of type setsetsetprop.
Theorem. (covering_dimension_topology_on)
∀X Tx n : set, covering_dimension X Tx ntopology_on X Tx
Proof:
Proof not loaded.
Theorem. (covering_dimension_n_in_omega)
∀X Tx n : set, covering_dimension X Tx nn ω
Proof:
Proof not loaded.
Theorem. (covering_dimensionI)
∀X Tx n : set, topology_on X Txn ω(∀A : set, open_cover_of X Tx A∃B : set, open_cover_of X Tx B refines_cover B A collection_has_order_at_most_m_plus_one X B n)covering_dimension X Tx n
Proof:
Proof not loaded.
Definition. We define finite_dimensional_space to be λX Tx ⇒ topology_on X Tx ∃m : set, m ω ∀A : set, open_cover_of X Tx A∃B : set, open_cover_of X Tx B refines_cover B A collection_has_order_at_most_m_plus_one X B m of type setsetprop.
Theorem. (finite_dimensional_spaceI)
∀X Tx : set, topology_on X Tx(∃m : set, m ω ∀A : set, open_cover_of X Tx A∃B : set, open_cover_of X Tx B refines_cover B A collection_has_order_at_most_m_plus_one X B m)finite_dimensional_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (compact_manifold_dimension_le)
∀X Tx m : set, m_manifold X Tx mcompact_space X Txcovering_dimension X Tx m
Proof:
Proof not loaded.
Theorem. (Menger_Nobeling_embedding)
∀X Tx m : set, compact_space X Txmetrizable X Txcovering_dimension X Tx m∃N : set, ∃e : set, embedding_of X Tx (euclidean_space N) (euclidean_topology N) e
Proof:
Proof not loaded.
Theorem. (cardinality_at_most_mono_subset)
∀S1 S2 n : set, S1 S2cardinality_at_most S2 ncardinality_at_most S1 n
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (dimension_closed_subspace_le)
∀X Tx Y n : set, covering_dimension X Tx nclosed_in X Tx Ycovering_dimension Y (subspace_topology X Tx Y) n
Proof:
Proof not loaded.
Theorem. (dimension_union_closed_max)
∀X Tx Y Z n : set, topology_on X TxY XZ Xclosed_in X Tx Yclosed_in X Tx Zcovering_dimension Y (subspace_topology X Tx Y) ncovering_dimension Z (subspace_topology X Tx Z) ncovering_dimension (Y Z) (subspace_topology X Tx (Y Z)) n
Proof:
Proof not loaded.
Theorem. (dimension_finite_union_closed_max)
∀X Tx Fam n : set, topology_on X Txn ωfinite Fam(∀Y : set, Y FamY X closed_in X Tx Y covering_dimension Y (subspace_topology X Tx Y) n)covering_dimension ( Fam) (subspace_topology X Tx ( Fam)) n
Proof:
Proof not loaded.
Theorem. (compact_1_manifold_dimension_1)
∀X Tx : set, compact_space X Txm_manifold X Tx (Sing Empty)covering_dimension X Tx (Sing Empty)
Proof:
Proof not loaded.
Definition. We define two to be 2 of type set.
Theorem. (compact_2_manifold_dimension_le_2)
∀X Tx : set, compact_space X Txm_manifold X Tx twocovering_dimension X Tx two
Proof:
Proof not loaded.
Definition. We define arc to be λX Tx ⇒ ∃f : set, homeomorphism unit_interval unit_interval_topology X Tx f of type setsetprop.
Theorem. (arc_is_topological_space)
∀X Tx : set, arc X Txtopology_on X Tx
Proof:
Proof not loaded.
Definition. We define end_points_of_arc to be λX Tx p q ⇒ arc X Tx p X q X p q connected_space (X (Sing p)) (subspace_topology X Tx (X (Sing p))) connected_space (X (Sing q)) (subspace_topology X Tx (X (Sing q))) of type setsetsetsetprop.
Definition. We define linear_graph to be λG Tg ⇒ Hausdorff_space G Tg ∃Arcs : set, finite Arcs (∀A : set, A ArcsA G arc A (subspace_topology G Tg A)) G = Arcs (∀A B : set, A ArcsB ArcsA B∃p : set, (A B = Empty A B = Sing p)) of type setsetprop.
Theorem. (linear_graph_dimension_1)
∀G Tg : set, linear_graph G Tgcovering_dimension G Tg (Sing Empty)
Proof:
Proof not loaded.
Definition. We define R3_xcoord to be λp ⇒ p 0 of type setset.
Definition. We define R3_ycoord to be λp ⇒ p 1 of type setset.
Definition. We define R3_zcoord to be λp ⇒ p 2 of type setset.
Definition. We define R3_dx to be λp q ⇒ add_SNo (R3_xcoord q) (minus_SNo (R3_xcoord p)) of type setsetset.
Definition. We define R3_dy to be λp q ⇒ add_SNo (R3_ycoord q) (minus_SNo (R3_ycoord p)) of type setsetset.
Definition. We define R3_dz to be λp q ⇒ add_SNo (R3_zcoord q) (minus_SNo (R3_zcoord p)) of type setsetset.
Definition. We define det2_SNo to be λa b c d ⇒ add_SNo (mul_SNo a d) (minus_SNo (mul_SNo b c)) of type setsetsetsetset.
Definition. We define det3_SNo to be λa1 a2 a3 b1 b2 b3 c1 c2 c3 ⇒ add_SNo (mul_SNo a1 (det2_SNo b2 b3 c2 c3)) (add_SNo (minus_SNo (mul_SNo a2 (det2_SNo b1 b3 c1 c3))) (mul_SNo a3 (det2_SNo b1 b2 c1 c2))) of type setsetsetsetsetsetsetsetsetset.
Definition. We define collinear_in_R3 to be λp q r ⇒ p (euclidean_space 3) q (euclidean_space 3) r (euclidean_space 3) det2_SNo (R3_dx p q) (R3_dy p q) (R3_dx p r) (R3_dy p r) = 0 det2_SNo (R3_dx p q) (R3_dz p q) (R3_dx p r) (R3_dz p r) = 0 det2_SNo (R3_dy p q) (R3_dz p q) (R3_dy p r) (R3_dz p r) = 0 of type setsetsetprop.
Definition. We define coplanar_in_R3 to be λp q r s ⇒ p (euclidean_space 3) q (euclidean_space 3) r (euclidean_space 3) s (euclidean_space 3) det3_SNo (R3_dx p q) (R3_dy p q) (R3_dz p q) (R3_dx p r) (R3_dy p r) (R3_dz p r) (R3_dx p s) (R3_dy p s) (R3_dz p s) = 0 of type setsetsetsetprop.
Definition. We define geometrically_independent to be λS ⇒ ∃N : set, N ω S euclidean_space N of type setprop.
Definition. We define affine_plane to be λS ⇒ Eps_i (λP : set∃N : set, N ω S euclidean_space N P euclidean_space N) of type setset.
Definition. We define k_plane to be λk P ⇒ k ω ∃S : set, geometrically_independent S finite S (∃kp1 : set, kp1 = k (Sing k) equip S kp1) P = affine_plane S of type setsetprop.
Definition. We define general_position_RN to be λN A ⇒ N ω A euclidean_space N ∀S : set, S A(∀Np1 : set, Np1 = N (Sing N)(∃f : setset, inj S Np1 f)geometrically_independent S) of type setsetprop.
Theorem. (finite_set_approximation_general_position)
∀N : set, ∀pts : set, ∀delta : set, N ωfinite ptspts euclidean_space Ndelta R∃pts' : set, general_position_RN N pts' finite pts' equip pts pts'
Proof:
Proof not loaded.
Theorem. (Menger_Nobeling_embedding_full)
∀X Tx m : set, compact_space X Txmetrizable X Txcovering_dimension X Tx mm ω∃N : set, ∃e : set, N = add_nat (mul_nat two m) (Sing Empty) embedding_of X Tx (euclidean_space N) (euclidean_topology N) e
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (compact_m_manifold_dimension_le_m)
∀X Tx m : set, m ωcompact_space X Txm_manifold X Tx mcovering_dimension X Tx m
Proof:
Proof not loaded.
Theorem. (compact_m_manifold_embeds_R2mp1)
∀X Tx m : set, m ωcompact_space X Txm_manifold X Tx m∃N : set, ∃e : set, N = add_nat (mul_nat two m) (Sing Empty) embedding_of X Tx (euclidean_space N) (euclidean_topology N) e
Proof:
Proof not loaded.
Theorem. (compact_manifold_embeds_in_Euclidean)
∀X Tx : set, ∀m : set, m_manifold X Tx mcompact_space X Tx∃N : set, ∃e : set, N ω N Empty embedding_of X Tx (euclidean_space N) (euclidean_topology N) e
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define locally_m_euclidean to be λX Tx m ⇒ m ω topology_on X Tx ∀x : set, x X∃U : set, ∃V : set, ∃f : set, open_in X Tx U x U V (euclidean_space m) open_in (euclidean_space m) (euclidean_topology m) V homeomorphism U (subspace_topology X Tx U) V (subspace_topology (euclidean_space m) (euclidean_topology m) V) f of type setsetsetprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (m_manifold_implies_locally_m_euclidean)
∀X Tx m : set, m_manifold X Tx mlocally_m_euclidean X Tx m
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (locally_m_euclidean_implies_T1)
∀X Tx m : set, locally_m_euclidean X Tx mT1_space X Tx
Proof:
Proof not loaded.
Theorem. (ex50_1_discrete_dimension_0)
∀X Tx : set, Tx = discrete_topology Xtopology_on X Txcovering_dimension X Tx Empty
Proof:
Proof not loaded.
Theorem. (ex50_2_connected_T1_dimension_ge_1)
∀X Tx : set, connected_space X TxT1_space X Tx(∃x y : set, x X y X x y)covering_dimension X Tx EmptyFalse
Proof:
Proof not loaded.
Definition. We define topologists_sine_curve to be Eps_i (λS : setS EuclidPlane) of type set.
Proof:
Proof not loaded.
Definition. We define topologists_sine_curve_topology to be subspace_topology EuclidPlane R2_standard_topology topologists_sine_curve of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (In_2_3)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (graph3_in_euclidean_space3)
∀g : setset, (∀i : set, g i R)graph 3 g euclidean_space 3
Proof:
Proof not loaded.
Definition. We define ex50_R3_zero to be graph 3 (λ_ : set0) of type set.
Definition. We define ex50_R3_ones to be graph 3 (λ_ : set1) of type set.
Definition. We define ex50_R3_e1 to be graph 3 (λi : setif i = 0 then 1 else 0) of type set.
Definition. We define ex50_R3_e2 to be graph 3 (λi : setif i = 1 then 1 else 0) of type set.
Definition. We define ex50_R3_e3 to be graph 3 (λi : setif i = 2 then 1 else 0) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex50_5_embedding_m1_linear_graph)
∀X Tx : set, covering_dimension X Tx (Sing Empty)compact_space X Txmetrizable X Tx∃g : set, (∀x : set, x Xapply_fun g x (euclidean_space 3)) linear_graph (apply_fun g X) R_standard_topology
Proof:
Proof not loaded.
Theorem. (ex50_6_locally_compact_embeds)
∀X Tx m : set, m ωlocally_compact X TxHausdorff_space X Txsecond_countable_space X Tx(∀C : set, C Xcompact_space C (subspace_topology X Tx C)covering_dimension C (subspace_topology X Tx C) m)∃N : set, ∃e : set, N = add_nat (mul_nat two m) (Sing Empty) embedding_of X Tx (euclidean_space N) (euclidean_topology N) e closed_in (euclidean_space N) (euclidean_topology N) (apply_fun e X)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define sigma_compact to be λX Tx ⇒ topology_on X Tx ∃Fam : set, countable Fam (∀C : set, C FamC X compact_space C (subspace_topology X Tx C)) X = Fam of type setsetprop.
Theorem. (ex50_8_sigma_compact_dimension)
∀X Tx m : set, m ωsigma_compact X TxHausdorff_space X Tx(∀C : set, C Xcompact_space C (subspace_topology X Tx C)covering_dimension C (subspace_topology X Tx C) m)covering_dimension X Tx m
Proof:
Proof not loaded.
Theorem. (ex50_9_manifold_dimension_le_m)
∀X Tx m : set, m ωm_manifold X Tx mcovering_dimension X Tx m
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (homeomorphism_preserves_metrizable)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty fmetrizable Y Tymetrizable X Tx
Proof:
Proof not loaded.
Theorem. (homeomorphism_preserves_second_countable)
∀X Tx Y Ty f : set, homeomorphism X Tx Y Ty fsecond_countable_space Y Tysecond_countable_space X Tx
Proof:
Proof not loaded.
Definition. We define locally_metrizable_space to be λX Tx ⇒ topology_on X Tx ∀x : set, x X∃N : set, N Tx x N ∃d : set, metric_on N d subspace_topology X Tx N = metric_topology N d of type setsetprop.
Theorem. (closure_of_compact_subspace_compact)
∀X Tx A : set, topology_on X TxA Xcompact_space A (subspace_topology X Tx A)compact_space (closure_of X Tx A) (subspace_topology X Tx (closure_of X Tx A))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (chart_neighborhood_has_compact_closure)
∀X Tx m U V f x : set, m ωtopology_on X Txopen_in X Tx Ux UV (euclidean_space m)open_in (euclidean_space m) (euclidean_topology m) Vhomeomorphism U (subspace_topology X Tx U) V (subspace_topology (euclidean_space m) (euclidean_topology m) V) f∃U1 : set, U1 Tx x U1 compact_space (closure_of X Tx U1) (subspace_topology X Tx (closure_of X Tx U1))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (supp_ex_locally_euclidean_2_i_implies_ii)
∀X Tx m : set, locally_m_euclidean X Tx mcompact_space X TxHausdorff_space X Txm_manifold X Tx m
Proof:
Proof not loaded.
Theorem. (supp_ex_locally_euclidean_2_ii_implies_iii)
∀X Tx m : set, locally_m_euclidean X Tx mm_manifold X Tx mmetrizable X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (normal_T1_implies_Hausdorff)
∀X Tx : set, normal_space X TxT1_space X TxHausdorff_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define long_line to be Eps_i (λL : setinfinite L) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define long_line_topology to be Eps_i (λT : settopology_on long_line T) of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (supp_ex_locally_euclidean_8)
∀X Tx m : set, locally_m_euclidean X Tx m(metrizable X Tx (paracompact_space X Tx Hausdorff_space X Tx))
Proof:
Proof not loaded.
Theorem. (supp_ex_locally_euclidean_9)
∀X Tx m : set, locally_m_euclidean X Tx mmetrizable X Tx∀x : set, x Xm_manifold (component_of X Tx x) (subspace_topology X Tx (component_of X Tx x)) m
Proof:
Proof not loaded.
Definition. We define Gdelta_in to be λX Tx A ⇒ ∃Fam : set, countable_set Fam (∀UFam, open_in X Tx U) intersection_over_family X Fam = A of type setsetsetprop.
Theorem. (continuous_preimage_Gdelta)
∀X Tx Y Ty f A : set, continuous_map X Tx Y Ty fGdelta_in Y Ty AGdelta_in X Tx (preimage_of X f A)
Proof:
Proof not loaded.
Definition. We define open_map to be λX Tx Y Ty f ⇒ topology_on X Tx topology_on Y Ty function_on f X Y ∀U : set, U Tximage_of f U Ty of type setsetsetsetsetprop.
Definition. We define topological_group to be λG Tg ⇒ T1_space G Tg ∃mult inv e : set, function_on mult (setprod G G) G function_on inv G G e G (∀x y z : set, x Gy Gz Gapply_fun mult (apply_fun mult (x,y),z) = apply_fun mult (x,apply_fun mult (y,z))) (∀x : set, x Gapply_fun mult (e,x) = x apply_fun mult (x,e) = x) (∀x : set, x Gapply_fun mult (x,apply_fun inv x) = e apply_fun mult (apply_fun inv x,x) = e) continuous_map (setprod G G) (product_topology G Tg G Tg) G Tg mult continuous_map G Tg G Tg inv of type setsetprop.
Theorem. (topological_group_T1)
∀G Tg : set, topological_group G TgT1_space G Tg
Proof:
Proof not loaded.
Theorem. (topological_group_is_topology)
∀G Tg : set, topological_group G Tgtopology_on G Tg
Proof:
Proof not loaded.
Definition. We define separated_subsets to be λX Tx A B ⇒ A X B X closure_of X Tx A B = Empty A closure_of X Tx B = Empty of type setsetsetsetprop.
Definition. We define completely_normal_space to be λX Tx ⇒ topology_on X Tx (∀Y : set, Y Xnormal_space Y (subspace_topology X Tx Y)) of type setsetprop.
Definition. We define linear_continuum to be λX Tx ⇒ simply_ordered_set X Tx = order_topology X (∃x y : set, x X y X x y) (∀x y : set, x Xy Xorder_rel X x y∃z : set, z X order_rel X x z order_rel X z y) (∀A : set, A XA Empty(∃upper : set, upper X ∀a : set, a Aorder_rel X a upper a = upper)∃lub : set, lub X (∀a : set, a Aorder_rel X a lub a = lub) (∀bound : set, bound X(∀a : set, a Aorder_rel X a bound a = bound)order_rel X lub bound lub = bound)) of type setsetprop.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (linear_continuum_topology_on)
∀X Tx : set, linear_continuum X Txtopology_on X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (thm24_1_linear_continuum_intervals_connected)
∀X Tx a b : set, linear_continuum X Txa Xb Xorder_rel X a bconnected_space (order_interval X a b) (subspace_topology X Tx (order_interval X a b))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex30_1a_onepoint_Gdelta_firstcountable_T1)
∀X Tx x : set, first_countable_space X TxT1_space X Txx XGdelta_in X Tx (Sing x)
Proof:
Proof not loaded.
Theorem. (ex30_1b_Gdelta_not_firstcountable_exists)
∃X : set, ∃Tx : set, topology_on X Tx (∀x : set, x XGdelta_in X Tx (Sing x)) ¬ first_countable_space X Tx
Proof:
Proof not loaded.
Theorem. (ex30_2_basis_contains_countable)
∀X Tx : set, ∀Basis : set, second_countable_space X Txbasis_generates X Basis Tx∃CountableSub : set, CountableSub Basis countable CountableSub basis_generates X CountableSub Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex30_4_compact_metrizable_second_countable)
∀X Tx d : set, compact_space X Txmetrizable X Txmetric_on X dTx = metric_topology X dsecond_countable_space X Tx
Proof:
Proof not loaded.
Theorem. (ex30_5a_metrizable_countable_dense_second_countable)
∀X Tx : set, metrizable X Tx(∃D : set, D X countable D dense_in D X Tx)second_countable_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex30_9a_closed_Lindelof)
∀X Tx A : set, Lindelof_space X Txclosed_in X Tx ALindelof_space A (subspace_topology X Tx A)
Proof:
Proof not loaded.
Theorem. (ex30_9b_dense_not_countable_dense)
∃X : set, ∃Tx : set, ∃A : set, (∃D : set, D X countable D dense_in D X Tx) dense_in A X Tx ¬ (∃DA : set, DA A countable DA dense_in DA A (subspace_topology X Tx A))
Proof:
Proof not loaded.
Theorem. (ex30_10_product_countable_dense)
∀Idx : set, ∀Fam : set, countable Idx(∀i : set, i Idx∃Xi : set, ∃Txi : set, ∃Di : set, apply_fun Fam i = (Xi,Txi) Di Xi countable Di dense_in Di Xi Txi)∃D : set, D product_space Idx Fam countable D dense_in D (product_space Idx Fam) (product_topology_full Idx Fam)
Proof:
Proof not loaded.
Theorem. (ex30_11a_image_Lindelof)
∀X Tx Y Ty f : set, Lindelof_space X Txcontinuous_map X Tx Y Ty fLindelof_space (image_of f X) (subspace_topology Y Ty (image_of f X))
Proof:
Proof not loaded.
Theorem. (ex30_11b_image_countable_dense)
∀X Tx Y Ty f : set, (∃D : set, D X countable D dense_in D X Tx)continuous_map X Tx Y Ty f∃Df : set, Df (image_of f X) countable Df dense_in Df (image_of f X) (subspace_topology Y Ty (image_of f X))
Proof:
Proof not loaded.
Theorem. (ex30_12a_open_map_first_countable)
∀X Tx Y Ty f : set, first_countable_space X Txcontinuous_map X Tx Y Ty fopen_map X Tx Y Ty ffirst_countable_space (image_of f X) (subspace_topology Y Ty (image_of f X))
Proof:
Proof not loaded.
Theorem. (ex30_12b_open_map_second_countable)
∀X Tx Y Ty f : set, second_countable_space X Txcontinuous_map X Tx Y Ty fopen_map X Tx Y Ty fsecond_countable_space (image_of f X) (subspace_topology Y Ty (image_of f X))
Proof:
Proof not loaded.
Theorem. (ex30_13_disjoint_open_sets_countable)
∀X Tx : set, (∃D : set, D X countable D dense_in D X Tx)∀Fam : set, (∀U : set, U Famopen_in X Tx U)(∀U V : set, U FamV FamU VU V = Empty)countable Fam
Proof:
Proof not loaded.
Theorem. (ex30_14_product_Lindelof_compact)
∀X Tx Y Ty : set, Lindelof_space X Txcompact_space Y TyLindelof_space (setprod X Y) (product_topology X Tx Y Ty)
Proof:
Proof not loaded.
Definition. We define uniform_metric_C_I_R to be Eps_i (λd : setmetric_on C_I_R d) of type set.
Definition. We define uniform_topology_C_I_R to be metric_topology C_I_R uniform_metric_C_I_R of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define Q_infty to be {fR_omega_space|(∀n : set, n ωapply_fun f n rational_numbers) (∃n0 : set, n0 ω ∀m : set, m ω¬ (m n0)apply_fun f m = 0)} of type set.
Definition. We define Q_infty_topology to be subspace_topology R_omega_space R_omega_box_topology Q_infty of type set.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex31_1_regular_disjoint_closure_neighborhoods)
∀X Tx x y : set, regular_space X Txx Xy Xx y∃U V : set, open_in X Tx U open_in X Tx V x U y V closure_of X Tx U closure_of X Tx V = Empty
Proof:
Proof not loaded.
Theorem. (ex31_2_normal_disjoint_closure_neighborhoods)
∀X Tx A B : set, normal_space X Txclosed_in X Tx Aclosed_in X Tx BA B = Empty∃U V : set, open_in X Tx U open_in X Tx V A U B V closure_of X Tx U closure_of X Tx V = Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_topology_regular_sep)
∀X x F : set, simply_ordered_set Xx Xclosed_in X (order_topology X) Fx F∃U V : set, U order_topology X V order_topology X x U F V U V = Empty
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex31_4_comparison_topologies_separation)
∀X Tx Tx' : set, topology_on X Txtopology_on X Tx'Tx Tx'((Hausdorff_space X TxHausdorff_space X Tx') (regular_space X TxHausdorff_space X Tx') (normal_space X TxHausdorff_space X Tx'))
Proof:
Proof not loaded.
Theorem. (ex31_5_equalizer_closed_in_Hausdorff)
∀X Tx Y Ty f g : set, continuous_map X Tx Y Ty fcontinuous_map X Tx Y Ty gHausdorff_space Y Tyclosed_in X Tx {xX|apply_fun f x = apply_fun g x}
Proof:
Proof not loaded.
Definition. We define closed_map to be λX Tx Y Ty p ⇒ function_on p X Y ∀A : set, closed_in X Tx Aclosed_in Y Ty (image_of p A) of type setsetsetsetsetprop.
Theorem. (ex31_6_closed_map_preserves_normal)
∀X Tx Y Ty p : set, normal_space X Txcontinuous_map X Tx Y Ty pclosed_map X Tx Y Ty p(∀y : set, y Y∃x : set, x X apply_fun p x = y)normal_space Y Ty
Proof:
Proof not loaded.
Definition. We define perfect_map to be λX Tx Y Ty p ⇒ continuous_map X Tx Y Ty p closed_map X Tx Y Ty p (∀y : set, y Y∃x : set, x X apply_fun p x = y) (∀y : set, y Ycompact_space {xX|apply_fun p x = y} (subspace_topology X Tx {xX|apply_fun p x = y})) of type setsetsetsetsetprop.
Theorem. (ex31_7_perfect_map_properties)
∀X Tx Y Ty p : set, perfect_map X Tx Y Ty p(Hausdorff_space X TxHausdorff_space Y Ty) (regular_space X Txregular_space Y Ty) (locally_compact X Txlocally_compact Y Ty) (second_countable_space X Txsecond_countable_space Y Ty)
Proof:
Proof not loaded.
Theorem. (ex31_8_orbit_space_properties)
∀G Tg X Tx alpha : set, topological_group G Tgcompact_space G Tg(Hausdorff_space X Tx∃XG TxG : set, Hausdorff_space XG TxG) (regular_space X Tx∃XG TxG : set, regular_space XG TxG) (normal_space X Tx∃XG TxG : set, normal_space XG TxG) (locally_compact X Tx∃XG TxG : set, locally_compact XG TxG) (second_countable_space X Tx∃XG TxG : set, second_countable_space XG TxG)
Proof:
Proof not loaded.
Theorem. (ex32_1_closed_subspace_normal)
∀X Tx A : set, normal_space X Txclosed_in X Tx Anormal_space A (subspace_topology X Tx A)
Proof:
Proof not loaded.
Theorem. (ex32_2_factors_inherit_separation)
∀Idx Fam : set, (∀i : set, i Idx∃Xi Txi : set, apply_fun Fam i = (Xi,Txi) Xi Empty)((Hausdorff_space (product_space Idx Fam) (product_topology_full Idx Fam)∀i : set, i Idx∃Xi Txi : set, apply_fun Fam i = (Xi,Txi) Hausdorff_space Xi Txi) (regular_space (product_space Idx Fam) (product_topology_full Idx Fam)∀i : set, i Idx∃Xi Txi : set, apply_fun Fam i = (Xi,Txi) regular_space Xi Txi) (normal_space (product_space Idx Fam) (product_topology_full Idx Fam)∀i : set, i Idx∃Xi Txi : set, apply_fun Fam i = (Xi,Txi) normal_space Xi Txi))
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex32_4_regular_Lindelof_normal)
∀X Tx : set, regular_space X TxLindelof_space X Txnormal_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex32_6_completely_normal_characterization)
∀X Tx : set, completely_normal_space X Tx (one_point_sets_closed X Tx (∀A B : set, separated_subsets X Tx A B∃U V : set, open_in X Tx U open_in X Tx V A U B V U V = Empty))
Proof:
Proof not loaded.
Definition. We define metric_restrict to be λX d A ⇒ graph (setprod A A) (λp : setapply_fun d p) of type setsetsetset.
Theorem. (metric_restrict_def)
∀X d A : set, metric_restrict X d A = graph (setprod A A) (λp : setapply_fun d p)
Proof:
Proof not loaded.
Theorem. (metric_restrict_apply)
∀X d A x y : set, x Ay Aapply_fun (metric_restrict X d A) (x,y) = apply_fun d (x,y)
Proof:
Proof not loaded.
Theorem. (metric_restrict_is_metric_on)
∀X d A : set, metric_on X dA Xmetric_on A (metric_restrict X d A)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (subspace_of_metrizable_is_metrizable)
∀X Tx A : set, metrizable X TxA Xmetrizable A (subspace_topology X Tx A)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (order_interval_in_order_topology)
∀X a b : set, simply_ordered_set Xa Xb Xorder_interval X a b order_topology X
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define ex32_8_WFpred to be λX A B S Ts W0 ⇒ (∃x : set, x S W0 = component_of S Ts x) (∃a b : set, a A b B order_rel X a b W0 = order_interval X a b) of type setsetsetsetsetsetprop.
Theorem. (ex32_8b_WF_is_component_family)
∀X A B S Ts WF : set, WF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}∀W : set, W WF∃x : set, x S W = component_of S Ts x
Proof:
Proof not loaded.
Theorem. (ex32_8b_C_subset_S)
∀X A B S Ts WF C : set, ∀pick : setset, WF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)C S
Proof:
Proof not loaded.
Theorem. (ex32_8b_C_disjoint_A_union_B)
∀X A B S Ts WF C : set, ∀pick : setset, S = X (A B)WF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)C (A B) = Empty
Proof:
Proof not loaded.
Theorem. (ex32_8b_C_disjoint_A)
∀X A B S Ts WF C : set, ∀pick : setset, S = X (A B)WF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)C A = Empty
Proof:
Proof not loaded.
Theorem. (ex32_8b_C_disjoint_B)
∀X A B S Ts WF C : set, ∀pick : setset, S = X (A B)WF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)C B = Empty
Proof:
Proof not loaded.
Theorem. (ex32_8b_WF_pairwise_disjoint)
∀X A B S Ts WF : set, topology_on S TsWF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}pairwise_disjoint WF
Proof:
Proof not loaded.
Theorem. (ex32_8b_C_intersection_W)
∀X A B S Ts WF C : set, ∀pick : setset, topology_on S TsWF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)∀W : set, W WFC W = {pick W}
Proof:
Proof not loaded.
Theorem. (ex32_8b_component_disjoint_C_if_not_in_WF)
∀X A B S Ts WF C : set, ∀pick : setset, topology_on S TsWF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W0 : set, W0 WFpick W0 W0)∀x : set, x S∀W : set, W = component_of S Ts x¬ (W WF)C W = Empty
Proof:
Proof not loaded.
Axiom. (ex32_8a_component_of_complement_shape) We take the following as an axiom:
∀X Tx C x : set, linear_continuum X Txclosed_in X Tx CC Emptyx (X C)(∃c c' : set, c C c' C order_rel X c c' component_of (X C) (subspace_topology X Tx (X C)) x = order_interval X c c') (∃c : set, c C (∀d : set, d C¬ order_rel X c d) component_of (X C) (subspace_topology X Tx (X C)) x = {yX|order_rel X c y}) (∃c : set, c C (∀d : set, d C¬ order_rel X d c) component_of (X C) (subspace_topology X Tx (X C)) x = {yX|order_rel X y c})
Theorem. (ex32_8a_component_of_complement_shape_sketch)
∀X Tx C x : set, linear_continuum X Txclosed_in X Tx CC Emptyx (X C)(∃c c' : set, c C c' C order_rel X c c' component_of (X C) (subspace_topology X Tx (X C)) x = order_interval X c c') (∃c : set, c C (∀d : set, d C¬ order_rel X c d) component_of (X C) (subspace_topology X Tx (X C)) x = {yX|order_rel X c y}) (∃c : set, c C (∀d : set, d C¬ order_rel X d c) component_of (X C) (subspace_topology X Tx (X C)) x = {yX|order_rel X y c})
Proof:
Proof not loaded.
Axiom. (ex32_8b_complement_open) We take the following as an axiom:
∀X Tx A B S Ts WF C : set, ∀pick : setset, linear_continuum X Txclosed_in X Tx Aclosed_in X Tx BA B = EmptyS = X (A B)Ts = subspace_topology X Tx SWF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)(X C) Tx
Theorem. (ex32_8b_complement_open_sketch)
∀X Tx A B S Ts WF C : set, ∀pick : setset, linear_continuum X Txclosed_in X Tx Aclosed_in X Tx BA B = EmptyS = X (A B)Ts = subspace_topology X Tx SWF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)(X C) Tx
Proof:
Proof not loaded.
Theorem. (ex32_8b_chosen_points_set_closed)
∀X Tx A B S Ts WF C : set, ∀pick : setset, linear_continuum X Txclosed_in X Tx Aclosed_in X Tx BA B = EmptyS = X (A B)Ts = subspace_topology X Tx SWF = {W0𝒫 S|ex32_8_WFpred X A B S Ts W0}C = {pick W0|W0WF}(∀W : set, W WFpick W W)closed_in X Tx C
Proof:
Proof not loaded.
Axiom. (ex32_8c_find_interval_component_in_component) We take the following as an axiom:
∀X Tx A B C x a b : set, linear_continuum X Txclosed_in X Tx Aclosed_in X Tx BA B = Emptyclosed_in X Tx Ca Ab Bx (X C)a component_of (X C) (subspace_topology X Tx (X C)) xb component_of (X C) (subspace_topology X Tx (X C)) x∃W : set, (∃y : set, y (X (A B)) W = component_of (X (A B)) (subspace_topology X Tx (X (A B))) y) (∃a0 b0 : set, a0 A b0 B order_rel X a0 b0 W = order_interval X a0 b0) W component_of (X C) (subspace_topology X Tx (X C)) x
Theorem. (ex32_8c_find_interval_component_in_component_sketch)
∀X Tx A B C x a b : set, linear_continuum X Txclosed_in X Tx Aclosed_in X Tx BA B = Emptyclosed_in X Tx Ca Ab Bx (X C)a component_of (X C) (subspace_topology X Tx (X C)) xb component_of (X C) (subspace_topology X Tx (X C)) x∃W : set, (∃y : set, y (X (A B)) W = component_of (X (A B)) (subspace_topology X Tx (X (A B))) y) (∃a0 b0 : set, a0 A b0 B order_rel X a0 b0 W = order_interval X a0 b0) W component_of (X C) (subspace_topology X Tx (X C)) x
Proof:
Proof not loaded.
Theorem. (ex32_8c_component_of_X_minus_C_not_both)
∀X Tx A B C : set, linear_continuum X Txclosed_in X Tx Aclosed_in X Tx BA B = Empty(∀W : set, (∃x : set, x (X (A B)) W = component_of (X (A B)) (subspace_topology X Tx (X (A B))) x)(∃a b : set, a A b B order_rel X a b W = order_interval X a b)∃cW : set, cW C cW W)closed_in X Tx C(∀x : set, x (X C)¬ (∃a b : set, a A b B a component_of (X C) (subspace_topology X Tx (X C)) x b component_of (X C) (subspace_topology X Tx (X C)) x))
Proof:
Proof not loaded.
Theorem. (ex32_8_linear_continuum_normal)
∀X Tx : set, linear_continuum X Txnormal_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define perfectly_normal_space to be λX Tx ⇒ normal_space X Tx (∀A : set, closed_in X Tx AGdelta_in X Tx A) of type setsetprop.
Theorem. (ex33_1_level_sets_urysohn)
∀X Tx A B : set, ∀U : setset, normal_space X Txclosed_in X Tx Aclosed_in X Tx BA B = Empty∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x Aapply_fun f x = 0) (∀x : set, x Bapply_fun f x = 1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex33_2a_connected_normal_uncountable)
∀X Tx : set, connected_space X Txnormal_space X Tx(∃x y : set, x X y X x y)¬ countable X
Proof:
Proof not loaded.
Theorem. (ex33_2b_connected_regular_uncountable)
∀X Tx : set, connected_space X Txregular_space X Tx(∃x y : set, x X y X x y)¬ countable X
Proof:
Proof not loaded.
Theorem. (ex33_3_urysohn_metric_direct)
∀X d A B : set, metric_on X dclosed_in X (metric_topology X d) Aclosed_in X (metric_topology X d) BA B = Empty∃f : set, continuous_map X (metric_topology X d) R R_standard_topology f (∀x : set, x Aapply_fun f x = 0) (∀x : set, x Bapply_fun f x = 1)
Proof:
Proof not loaded.
Theorem. (ex33_4_closed_Gdelta_vanishing_function)
∀X Tx A : set, normal_space X Txclosed_in X Tx A(Gdelta_in X Tx A ∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x Aapply_fun f x = 0) (∀x : set, x Xx A¬ (apply_fun f x = 0)))
Proof:
Proof not loaded.
Theorem. (ex33_5_strong_urysohn)
∀X Tx A B : set, normal_space X Txclosed_in X Tx Aclosed_in X Tx BA B = Empty(Gdelta_in X Tx A Gdelta_in X Tx B ∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x Aapply_fun f x = 0) (∀x : set, x Bapply_fun f x = 1) (∀x : set, x Xx Ax B¬ (apply_fun f x = 0) ¬ (apply_fun f x = 1)))
Proof:
Proof not loaded.
Theorem. (metric_closed_is_Gdelta)
∀X d A : set, metric_on X dclosed_in X (metric_topology X d) AGdelta_in X (metric_topology X d) A
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex33_8_compact_subset_continuous_separation)
∀X Tx A B : set, completely_regular_space X Txcompact_space A (subspace_topology X Tx A)closed_in X Tx BA B = Empty∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x Aapply_fun f x = 0) (∀x : set, x Bapply_fun f x = 1)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define retraction_of to be λX Tx A ⇒ A X ∃r : set, function_on r X X continuous_map X Tx X Tx r (∀x : set, x Xapply_fun r x A) (∀x : set, x Aapply_fun r x = x) of type setsetsetprop.
Definition. We define image_of_map to be λX Tx Y Ty f ⇒ image_of f X of type setsetsetsetsetset.
Definition. We define absolute_retract to be λX Tx ⇒ normal_space X Tx ∀Z Tz Y0 f : set, normal_space Z TzY0 Zclosed_in Z Tz Y0homeomorphism X Tx Y0 (subspace_topology Z Tz Y0) fretraction_of Z Tz Y0 of type setsetprop.
Definition. We define coherent_union to be λXi ⇒ {apply_fun Xi i|iω} of type setset.
Theorem. (coherent_union_contains)
∀Xi i x : set, i ωx apply_fun Xi ix coherent_union Xi
Proof:
Proof not loaded.
Theorem. (coherent_unionE)
∀Xi x : set, x coherent_union Xi∃i : set, i ω x apply_fun Xi i
Proof:
Proof not loaded.
Theorem. (coherent_union_component_subset)
∀Xi i : set, i ωapply_fun Xi i coherent_union Xi
Proof:
Proof not loaded.
Definition. We define coherent_topology to be λXi Ti ⇒ {U𝒫 (coherent_union Xi)|∀iω, (U apply_fun Xi i) apply_fun Ti i} of type setsetset.
Definition. We define coherent_chain to be λXi Ti ⇒ (∀i : set, i ωtopology_on (apply_fun Xi i) (apply_fun Ti i)) (∀i : set, i ωapply_fun Xi i apply_fun Xi (ordsucc i)) (∀i : set, i ωsubspace_topology (apply_fun Xi (ordsucc i)) (apply_fun Ti (ordsucc i)) (apply_fun Xi i) = apply_fun Ti i) (∀i : set, i ωclosed_in (apply_fun Xi (ordsucc i)) (apply_fun Ti (ordsucc i)) (apply_fun Xi i)) of type setsetprop.
Theorem. (coherent_chain_mono_add_nat)
∀Xi Ti i k : set, coherent_chain Xi Tii ωk ωapply_fun Xi i apply_fun Xi (add_nat i k)
Proof:
Proof not loaded.
Theorem. (coherent_chain_mono_mem)
∀Xi Ti j : set, coherent_chain Xi Tij ω∀i : set, i japply_fun Xi i apply_fun Xi j
Proof:
Proof not loaded.
Theorem. (coherent_chain_closed_in_succ)
∀Xi Ti i A : set, coherent_chain Xi Tii ωclosed_in (apply_fun Xi i) (apply_fun Ti i) Aclosed_in (apply_fun Xi (ordsucc i)) (apply_fun Ti (ordsucc i)) A
Proof:
Proof not loaded.
Theorem. (coherent_chain_Tietze_extend_interval_succ)
∀Xi Ti i a b f : set, coherent_chain Xi Tii ωRle a bnormal_space (apply_fun Xi (ordsucc i)) (apply_fun Ti (ordsucc i))continuous_map (apply_fun Xi i) (apply_fun Ti i) (closed_interval a b) (closed_interval_topology a b) f∃g : set, continuous_map (apply_fun Xi (ordsucc i)) (apply_fun Ti (ordsucc i)) (closed_interval a b) (closed_interval_topology a b) g (∀x : set, x apply_fun Xi iapply_fun g x = apply_fun f x)
Proof:
Proof not loaded.
Theorem. (closed_in_coherent_component)
∀Xi Ti A i : set, (∀j : set, j ωtopology_on (apply_fun Xi j) (apply_fun Ti j))closed_in (coherent_union Xi) (coherent_topology Xi Ti) Ai ωclosed_in (apply_fun Xi i) (apply_fun Ti i) (A apply_fun Xi i)
Proof:
Proof not loaded.
Theorem. (coherent_chain_extend_interval_succ_with_boundary)
∀Xi Ti A B i fi : set, coherent_chain Xi Ti(∀j : set, j ωnormal_space (apply_fun Xi j) (apply_fun Ti j))i ωclosed_in (coherent_union Xi) (coherent_topology Xi Ti) Aclosed_in (coherent_union Xi) (coherent_topology Xi Ti) BA B = Emptycontinuous_map (apply_fun Xi i) (apply_fun Ti i) (closed_interval 0 1) (closed_interval_topology 0 1) fi(∀x : set, x (A apply_fun Xi i)apply_fun fi x = 0)(∀x : set, x (B apply_fun Xi i)apply_fun fi x = 1)∃gi : set, continuous_map (apply_fun Xi (ordsucc i)) (apply_fun Ti (ordsucc i)) (closed_interval 0 1) (closed_interval_topology 0 1) gi (∀x : set, x apply_fun Xi iapply_fun gi x = apply_fun fi x) (∀x : set, x (A apply_fun Xi (ordsucc i))apply_fun gi x = 0) (∀x : set, x (B apply_fun Xi (ordsucc i))apply_fun gi x = 1)
Proof:
Proof not loaded.
Definition. We define compact_spaces_family to be λI Xi ⇒ ∀i : set, i Icompact_space (product_component Xi i) (product_component_topology Xi i) of type setsetprop.
Definition. We define surjective_map to be λX Y f ⇒ function_on f X Y ∀y : set, y Y∃x : set, x X apply_fun f x = y of type setsetsetprop.
Definition. We define ex34_1_Hausdorff_countable_basis_not_metrizable_example to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx Hausdorff_space X Tx second_countable_space X Tx ¬ metrizable X Tx} of type set.
Definition. We define ex34_2_completely_normal_not_metrizable_example to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx completely_normal_space X Tx ¬ metrizable X Tx} of type set.
Definition. We define ex34_3_compact_Hausdorff_metrizable_iff_second_countable to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx compact_space X Tx Hausdorff_space X Tx (metrizable X Tx second_countable_space X Tx)} of type set.
Definition. We define ex34_4_locally_compact_Hausdorff_metrizable_questions to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx locally_compact X Tx Hausdorff_space X Tx (second_countable_space X Txmetrizable X Tx)} of type set.
Definition. We define ex34_5_one_point_compactification_metrizable_questions to be {q𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx Y Ty p : set, q = setprod (setprod (setprod X Tx) (setprod Y Ty)) p one_point_compactification X Tx Y Ty p Y ¬ p X (metrizable X Tx metrizable Y Ty)} of type set.
Definition. We define ex34_6_check_imbedding_proof to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx f : set, p = setprod (setprod X Tx) f completely_regular_space X Tx Hausdorff_space X Tx embedding_of X Tx (power_real ω) (product_topology_full ω (const_space_family ω R R_standard_topology)) f} of type set.
Definition. We define ex34_7_locally_metrizable_compact_Hausdorff_metrizable to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx locally_metrizable_space X Tx compact_space X Tx Hausdorff_space X Tx metrizable X Tx} of type set.
Definition. We define ex34_8_regular_Lindelof_locally_metrizable_metrizable to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx (regular_space X Tx Lindelof_space X Tx locally_metrizable_space X Txmetrizable X Tx)} of type set.
Definition. We define ex34_9_compact_union_two_metrizable_closed_metrizable to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx A B : set, p = setprod (setprod X Tx) (setprod A B) compact_space X Tx Hausdorff_space X Tx closed_in X Tx A closed_in X Tx B (UPair A B) = X metrizable A (subspace_topology X Tx A) metrizable B (subspace_topology X Tx B) metrizable X Tx} of type set.
Definition. We define ex35_1_Tietze_implies_Urysohn to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx normal_space X Tx (∀A B : set, closed_in X Tx A closed_in X Tx B A B = Empty∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x Aapply_fun f x = 0) (∀x : set, x Bapply_fun f x = 1))} of type set.
Definition. We define ex35_2_interval_partition_parameter to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx normal_space X Tx} of type set.
Definition. We define ex35_3_boundedness_equivalences_metrizable to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx d : set, p = setprod (setprod X Tx) d metric_on X d metric_topology X d = Tx} of type set.
Definition. We define ex35_4_retract_properties to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx A : set, p = setprod (setprod X Tx) A retraction_of X Tx A} of type set.
Definition. We define ex35_5_universal_extension_retracts to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx A : set, p = setprod (setprod X Tx) A normal_space X Tx retraction_of X Tx A ∀Y Ty f : set, continuous_map A (subspace_topology X Tx A) Y Ty f∃g : set, continuous_map X Tx Y Ty g ∀x : set, x Aapply_fun g x = apply_fun f x} of type set.
Definition. We define ex35_6_absolute_retract_universal_extension to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx absolute_retract X Tx} of type set.
Definition. We define ex35_7_retract_examples to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx A : set, p = setprod (setprod X Tx) A retraction_of X Tx A} of type set.
Definition. We define ex35_8_absolute_retract_equivalence to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx : set, p = setprod X Tx absolute_retract X Tx} of type set.
Theorem. (ex35_9a_coherent_topology_is_topology)
∀Xi Ti : set, (∀i : set, i ωtopology_on (apply_fun Xi i) (apply_fun Ti i))topology_on (coherent_union Xi) (coherent_topology Xi Ti)
Proof:
Proof not loaded.
Theorem. (ex35_9b_continuous_if_restrictions_continuous)
∀Xi Ti Y Ty f : set, (∀i : set, i ωtopology_on (apply_fun Xi i) (apply_fun Ti i))topology_on Y Tyfunction_on f (coherent_union Xi) Y(∀i : set, i ωcontinuous_map (apply_fun Xi i) (apply_fun Ti i) Y Ty f)continuous_map (coherent_union Xi) (coherent_topology Xi Ti) Y Ty f
Proof:
Proof not loaded.
Theorem. (ex35_9c_coherent_topology_normal)
∀Xi Ti : set, coherent_chain Xi Ti(∀i : set, i ωnormal_space (apply_fun Xi i) (apply_fun Ti i))normal_space (coherent_union Xi) (coherent_topology Xi Ti)
Proof:
Proof not loaded.
Definition. We define ex36_manifold_embedding_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃M TM m f : set, p = setprod (setprod M TM) f m_manifold M TM m∃n : set, embedding_of M TM (euclidean_space n) (euclidean_topology n) f} of type set.
Definition. We define ex37_tychonoff_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃I Xi : set, p = setprod I Xi compact_spaces_family I Xi compact_space (product_space I Xi) (product_topology_full I Xi)} of type set.
Definition. We define ex38_stone_cech_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx Y Ty : set, p = setprod (setprod X Tx) (setprod Y Ty) completely_regular_space X Tx compact_space Y Ty Hausdorff_space Y Ty ∃e : set, embedding_of X Tx Y Ty e} of type set.
Definition. We define ex39_local_finiteness_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx U : set, p = setprod (setprod X Tx) U locally_finite_family X Tx U} of type set.
Definition. We define ex40_nagata_smirnov_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx B : set, p = setprod (setprod X Tx) B (regular_space X Tx basis_on X B locally_finite_family X Tx Bmetrizable X Tx)} of type set.
Definition. We define ex41_paracompactness_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx U : set, p = setprod (setprod X Tx) U paracompact_space X Tx open_cover X Tx U} of type set.
Definition. We define ex42_smirnov_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx B : set, p = setprod (setprod X Tx) B (regular_space X Tx basis_on X B locally_finite_family X Tx Bmetrizable X Tx)} of type set.
Definition. We define ex43_complete_metric_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X d Tx : set, p = setprod (setprod X d) Tx metric_on X d Tx = metric_topology X d complete_metric_space X d} of type set.
Definition. We define ex44_space_filling_exercises to be {f𝒫 (𝒫 (𝒫 R))|continuous_map unit_interval R2_standard_topology unit_square unit_square_topology f surjective_map unit_interval unit_square f} of type set.
Definition. We define ex45_compact_metric_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X d Tx : set, p = setprod (setprod X d) Tx metric_on X d Tx = metric_topology X d compact_space X Tx} of type set.
Definition. We define ex46_convergence_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx Y Ty : set, p = setprod (setprod X Tx) (setprod Y Ty) topology_on X Tx topology_on Y Ty} of type set.
Definition. We define ex47_ascoli_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx Y Ty : set, p = setprod (setprod X Tx) (setprod Y Ty) compact_space X Tx Hausdorff_space Y Ty} of type set.
Theorem. (ex48_1_Baire_union_interior)
∀X Tx : set, ∀Fam : set, Baire_space X TxX Emptycountable_set FamX = Fam∃B : set, B Fam ∃U : set, U Tx U Empty U (closure_of X Tx B)
Proof:
Proof not loaded.
Theorem. (ex48_2_R_not_countable_empty_interior)
∀Fam : set, countable_set Fam(∀C : set, C Famclosed_in R R_standard_topology C (∀U : set, U R_standard_topologyU CU = Empty))R Fam
Proof:
Proof not loaded.
Theorem. (ex48_4_locally_Baire_implies_Baire)
∀X Tx : set, topology_on X Tx(∀x : set, x X∃U : set, U Tx x U Baire_space U (subspace_topology X Tx U))Baire_space X Tx
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex48_5_Gdelta_Baire)
∀X Tx Y : set, (compact_space X Tx Hausdorff_space X Tx)(∃Fam : set, countable_set Fam (∀W : set, W FamW Tx) Y = intersection_over_family X Fam)Baire_space Y (subspace_topology X Tx Y)
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex48_7a_continuity_set_Gdelta)
∀f : set, function_on f R R∃Fam : set, countable_set Fam (∀U : set, U FamU R_standard_topology) {xR|continuous_at f x} = intersection_over_family R Fam
Proof:
Proof not loaded.
Theorem. (ex48_7b_countable_dense_not_Gdelta)
∀D : set, D Rcountable_set Ddense_in D R R_standard_topology¬ (∃Fam : set, countable_set Fam (∀W : set, W FamW R_standard_topology) D = intersection_over_family R Fam)
Proof:
Proof not loaded.
Theorem. (ex48_7_no_function_continuous_on_countable_dense)
∀D : set, D Rcountable_set Ddense_in D R R_standard_topology¬ (∃f : set, function_on f R R (∀x : set, x Dcontinuous_at f x) (∀x : set, x Rx D¬ continuous_at f x))
Proof:
Proof not loaded.
Definition. We define pointwise_limit_of_sequence_of_functions to be λfn f ⇒ ∀x : set, x R∀eps : set, eps RRlt 0 eps∃N : set, N ω ∀n : set, n ωN nRlt (Abs (add_SNo (apply_fun (apply_fun fn n) x) (minus_SNo (apply_fun f x)))) eps of type setsetprop.
Proof:
Proof not loaded.
Theorem. (ex48_9_Thomae_function)
∀g : set, ∀f : set, (∀n : set, n ωapply_fun g n Q)function_on f R R(∀n : set, n ωapply_fun f (apply_fun g n) = recip_SNo (ordsucc n))(∀x : set, x Rx Qapply_fun f x = 0)∀x : set, x Rx Qcontinuous_at f x
Proof:
Proof not loaded.
Theorem. (ex48_10_uniform_boundedness)
∀X d : set, ∀FF : set, complete_metric_space X dFF 𝒫 (𝒫 R)(∀a : set, a X∃M : set, M R ∀f : set, f FFapply_fun f a R)∃U : set, ∃M : set, U (metric_topology X d) U Empty M R ∀f : set, f FF∀x : set, x Uapply_fun f x R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Definition. We define ex49_example1_f to be Eps_i (λf : setf C_I_R) of type set.
Definition. We define ex49_example1_g to be Eps_i (λg : setg C_I_R) of type set.
Definition. We define ex49_example1_k to be Eps_i (λk : setk C_I_R) of type set.
Theorem. (C_I_R_nonempty)
∃f : set, f C_I_R
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Proof:
Proof not loaded.
Theorem. (ex49_2_construct_bounded_function)
∀n : set, ∀eps : set, n ω2 neps R∃f : set, continuous_map unit_interval I_topology R R_standard_topology f (∀x : set, x unit_intervalapply_fun f x R) f U_n n (∀x : set, x unit_intervalRle (Abs (apply_fun f x)) eps)
Proof:
Proof not loaded.
Definition. We define ex50_dimension_exercises to be {p𝒫 (𝒫 (𝒫 (𝒫 (𝒫 (𝒫 R)))))|∃X Tx n : set, p = setprod (setprod X Tx) n topology_on X Tx ordinal n} of type set.