Primitive. The name Eps_i is a term of type (setprop)set.
Axiom. (Eps_i_ax) We take the following as an axiom:
∀P : setprop, ∀x : set, P xP (Eps_i P)
Definition. We define True to be ∀p : prop, pp of type prop.
Definition. We define False to be ∀p : prop, p of type prop.
Definition. We define not to be λA : propAFalse of type propprop.
Notation. We use ¬ as a prefix operator with priority 700 corresponding to applying term not.
Definition. We define and to be λA B : prop∀p : prop, (ABp)p of type proppropprop.
Notation. We use as an infix operator with priority 780 and which associates to the left corresponding to applying term and.
Definition. We define or to be λA B : prop∀p : prop, (Ap)(Bp)p of type proppropprop.
Notation. We use as an infix operator with priority 785 and which associates to the left corresponding to applying term or.
Definition. We define iff to be λA B : propand (AB) (BA) of type proppropprop.
Notation. We use as an infix operator with priority 805 and no associativity corresponding to applying term iff.
Beginning of Section Eq
Variable A : SType
Definition. We define eq to be λx y : A∀Q : AAprop, Q x yQ y x of type AAprop.
Definition. We define neq to be λx y : A¬ eq x y of type AAprop.
End of Section Eq
Notation. We use = as an infix operator with priority 502 and no associativity corresponding to applying term eq.
Notation. We use as an infix operator with priority 502 and no associativity corresponding to applying term neq.
Theorem. (t3_xregular)
∀k3_tarski : setset, ∀esk6_2 : setsetset, ∀v1_xboole_0 : setprop, ∀esk10_1 : setset, ∀esk11_2 : setsetset, ∀r1_xboole_0 : setsetprop, ∀esk12_1 : setset, ∀esk14_2 : setsetset, ∀esk1_0 : set, ∀esk2_1 : setset, ∀esk13_1 : setset, ∀esk9_0 : set, ∀esk8_0 : set, ∀k1_xboole_0 : set, ∀esk3_1 : setset, ∀esk7_2 : setsetset, ∀esk5_3 : setsetsetset, ∀r2_hidden : setsetprop, ∀esk4_3 : setsetsetset, ∀k2_xboole_0 : setsetset, (∀X1 X3 X2, (X3 = (k2_xboole_0 X1 X2)False)r2_hidden (esk4_3 X1 X2 X3) X3r2_hidden (esk4_3 X1 X2 X3) X1False)(∀X2 X3 X1, (X3 = (k2_xboole_0 X1 X2)False)r2_hidden (esk4_3 X1 X2 X3) X3r2_hidden (esk4_3 X1 X2 X3) X2False)(∀X1 X3 X2, (X3 = (k2_xboole_0 X1 X2)False)(r2_hidden (esk4_3 X1 X2 X3) X3False)(r2_hidden (esk4_3 X1 X2 X3) X2False)(r2_hidden (esk4_3 X1 X2 X3) X1False)False)(∀X3 X2 X1, (X2 = (k3_tarski X1)False)r2_hidden X3 X1r2_hidden (esk6_2 X1 X2) X3r2_hidden (esk6_2 X1 X2) X2False)(∀X1 X2 X3, (r2_hidden (esk5_3 X1 X2 X3) X1False)X2 = (k3_tarski X1)r2_hidden X3 X2False)(∀X2 X3 X1, (r2_hidden X1 (esk5_3 X2 X3 X1)False)X3 = (k3_tarski X2)r2_hidden X1 X3False)(∀X1 X2, (X2 = (k3_tarski X1)False)(r2_hidden (esk6_2 X1 X2) X2False)(r2_hidden (esk6_2 X1 X2) (esk7_2 X1 X2)False)False)(∀X2 X1, (v1_xboole_0 X1False)r2_hidden X2 (esk10_1 X1)r1_xboole_0 (esk11_2 X1 X2) X1False)(∀X3 X1 X2, (v1_xboole_0 X2False)(r1_xboole_0 X3 X2False)(r2_hidden X1 (esk10_1 X2)False)r2_hidden X3 X1r2_hidden X1 (k3_tarski X2)False)(∀X1 X2, (v1_xboole_0 X2False)(r1_xboole_0 X1 X2False)(r2_hidden X1 (esk12_1 X2)False)r2_hidden X1 (k3_tarski (k3_tarski X2))False)(∀X1 X2, (X2 = (k3_tarski X1)False)(r2_hidden (esk6_2 X1 X2) X2False)(r2_hidden (esk7_2 X1 X2) X1False)False)(∀X3 X2 X1, (r1_xboole_0 X1 (k2_xboole_0 X2 X3)False)r1_xboole_0 X1 X3r1_xboole_0 X1 X2False)(∀X3 X1 X2, (r1_xboole_0 X1 X2False)r1_xboole_0 X1 (k2_xboole_0 X2 X3)False)(∀X3 X1 X2, (r1_xboole_0 X1 X2False)r1_xboole_0 X1 (k2_xboole_0 X3 X2)False)(∀X2 X1, (v1_xboole_0 X1False)(r2_hidden (esk11_2 X1 X2) X2False)r2_hidden X2 (esk10_1 X1)False)(∀X3 X2 X1 X4, (r2_hidden X1 X4False)(r2_hidden X1 X3False)X2 = (k2_xboole_0 X3 X4)r2_hidden X1 X2False)(∀X1 X2, (v1_xboole_0 X2False)(r2_hidden X1 (k3_tarski (k3_tarski X2))False)r2_hidden X1 (esk12_1 X2)False)(∀X3 X2 X1 X4, (r2_hidden X1 X4False)X4 = (k3_tarski X3)r2_hidden X2 X3r2_hidden X1 X2False)(∀X2 X1 X3, r2_hidden X1 X3r2_hidden X1 X2r1_xboole_0 X2 X3False)(∀X2 X4 X1 X3, (r2_hidden X1 X3False)X3 = (k2_xboole_0 X2 X4)r2_hidden X1 X2False)(∀X2 X4 X1 X3, (r2_hidden X1 X3False)X3 = (k2_xboole_0 X4 X2)r2_hidden X1 X2False)(∀X1 X2, (v1_xboole_0 X2False)r1_xboole_0 X1 X2r2_hidden X1 (esk12_1 X2)False)(∀X1 X2, (v1_xboole_0 X2False)(r2_hidden X1 (k3_tarski X2)False)r2_hidden X1 (esk10_1 X2)False)(∀X1 X2, (r1_xboole_0 X1 X2False)(r2_hidden (esk14_2 X1 X2) X1False)False)(∀X2 X1, (r1_xboole_0 X1 X2False)(r2_hidden (esk14_2 X1 X2) X2False)False)(∀X2 X1, (v1_xboole_0 X1False)v1_xboole_0 (k2_xboole_0 X1 X2)False)(∀X2 X1, (v1_xboole_0 X1False)v1_xboole_0 (k2_xboole_0 X2 X1)False)(∀X1, r2_hidden X1 esk1_0r1_xboole_0 (esk2_1 X1) esk1_0False)(∀X1, (r2_hidden (esk2_1 X1) (esk3_1 X1)False)r2_hidden X1 esk1_0False)(∀X2 X1, r2_hidden X2 X1r2_hidden X1 X2False)(∀X1, (r2_hidden (esk3_1 X1) X1False)r2_hidden X1 esk1_0False)(∀X2 X1, (r1_xboole_0 X2 X1False)r1_xboole_0 X1 X2False)(∀X1 X2, v1_xboole_0 X2r2_hidden X1 X2False)(∀X1, (v1_xboole_0 X1False)(r1_xboole_0 (esk13_1 X1) X1False)False)(∀X1, (v1_xboole_0 X1False)(r2_hidden (esk13_1 X1) X1False)False)(∀X2 X1, (X1 = X2False)v1_xboole_0 X2v1_xboole_0 X1False)(∀X1, (X1 = k1_xboole_0False)v1_xboole_0 X1False)(v1_xboole_0 esk9_0False)(v1_xboole_0 esk1_0False)(∀X2 X3 X1, ((k2_xboole_0 (k2_xboole_0 X1 X2) X3) = (k2_xboole_0 X1 (k2_xboole_0 X2 X3))False)False)(∀X2 X1, ((k2_xboole_0 X1 X2) = (k2_xboole_0 X2 X1)False)False)(∀X1, ((k2_xboole_0 X1 X1) = X1False)False)(∀X1, ((k2_xboole_0 X1 k1_xboole_0) = X1False)False)((v1_xboole_0 esk8_0False)False)((v1_xboole_0 k1_xboole_0False)False)False
Proof:
The rest of the proof is missing.