Primitive. The name Eps_i is a term of type (setprop)set.
L110
Axiom. (Eps_i_R) We take the following as an axiom:
∀P : setprop, ∀x : set, P xP (Eps_i P)
Primitive. The name False is a term of type prop.
Primitive. The name True is a term of type prop.
Primitive. The name not is a term of type propprop.
Notation. We use ¬ as a prefix operator with priority 700 corresponding to applying term not.
L122
Axiom. (dneg) We take the following as an axiom:
∀p : prop, ¬ ¬ pp
Primitive. The name and is a term of type proppropprop.
Notation. We use as an infix operator with priority 780 and which associates to the left corresponding to applying term and.
Primitive. The name or is a term of type proppropprop.
Notation. We use as an infix operator with priority 785 and which associates to the left corresponding to applying term or.
Primitive. The name iff is a term of type proppropprop.
Notation. We use as an infix operator with priority 805 and no associativity corresponding to applying term iff.
Beginning of Section Eq
L141
Variable A : SType
L143
Definition. We define eq to be λx y : A∀Q : AAprop, Q x yQ y x of type AAprop.
L145
Definition. We define neq to be λx y : A¬ eq x y of type AAprop.
End of Section Eq
Notation. We use = as an infix operator with priority 502 and no associativity corresponding to applying term eq.
Notation. We use as an infix operator with priority 502 and no associativity corresponding to applying term neq.
Beginning of Section Ex
L154
Variable A : SType
L156
Definition. We define ex to be λQ : Aprop∀P : prop, (∀x : A, Q xP)P of type (Aprop)prop.
End of Section Ex
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using ex.
Beginning of Section FE
L167
Variable A B : SType
L168
Axiom. (func_ext) We take the following as an axiom:
∀f g : AB, (∀x : A, f x = g x)f = g
End of Section FE
L170
Axiom. (prop_ext) We take the following as an axiom:
∀A B : prop, (A B)A = B
Primitive. The name In is a term of type setsetprop.
Notation. We use as an infix operator with priority 500 and no associativity corresponding to applying term In. Furthermore, we may write xA, B to mean x : set, xAB.
Primitive. The name Subq is a term of type setsetprop.
Notation. We use as an infix operator with priority 500 and no associativity corresponding to applying term Subq. Furthermore, we may write xA, B to mean x : set, xAB.
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using ex and handling ∈ or ⊆ ascriptions using and.
L184
Axiom. (set_ext) We take the following as an axiom:
∀X Y : set, X YY XX = Y
Primitive. The name is a term of type set.
L193
Axiom. (EmptyAx) We take the following as an axiom:
¬ ∃x : set, x
Primitive. The name is a term of type setset.
L198
Axiom. (UnionEq) We take the following as an axiom:
∀X : set, ∀x : set, x X ∃Y : set, x Y Y X
Primitive. The name 𝒫 is a term of type setset.
L205
Axiom. (PowerEq) We take the following as an axiom:
∀X Y : set, Y 𝒫 X Y X
Primitive. The name Repl is a term of type set(setset)set.
Notation. {B| xA} is notation for Repl Ax . B).
L215
Axiom. (ReplEq) We take the following as an axiom:
∀X : set, ∀F : setset, ∀y : set, y {F x|xX} ∃x : set, x X y = F x
Primitive. The name TransSet is a term of type setprop.
L220
Axiom. (HF_Min) We take the following as an axiom:
∀p : setprop, (∀X, p X∀xX, p x)p (∀X, p Xp ( X))(∀X, p Xp (𝒫 X))(∀X, p X∀F : setset, (∀xX, p (F x))p {F x|xX})∀x, p x
L228
Axiom. (In_ind) We take the following as an axiom:
∀P : setprop, (∀X : set, (∀x : set, x XP x)P X)∀X : set, P X
Primitive. The name atleast2 is a term of type setprop.
Primitive. The name atleast3 is a term of type setprop.
Primitive. The name atleast4 is a term of type setprop.
Primitive. The name atleast5 is a term of type setprop.
Primitive. The name atleast6 is a term of type setprop.
Primitive. The name exactly2 is a term of type setprop.
Primitive. The name exactly3 is a term of type setprop.
Primitive. The name exactly4 is a term of type setprop.
Primitive. The name exactly5 is a term of type setprop.
Primitive. The name exu_i is a term of type (setprop)prop.
Primitive. The name reflexive_i is a term of type (setsetprop)prop.
Primitive. The name irreflexive_i is a term of type (setsetprop)prop.
Primitive. The name symmetric_i is a term of type (setsetprop)prop.
Primitive. The name antisymmetric_i is a term of type (setsetprop)prop.
Primitive. The name transitive_i is a term of type (setsetprop)prop.
Primitive. The name eqreln_i is a term of type (setsetprop)prop.
Primitive. The name per_i is a term of type (setsetprop)prop.
Primitive. The name linear_i is a term of type (setsetprop)prop.
Primitive. The name trichotomous_or_i is a term of type (setsetprop)prop.
Primitive. The name partialorder_i is a term of type (setsetprop)prop.
Primitive. The name totalorder_i is a term of type (setsetprop)prop.
Primitive. The name strictpartialorder_i is a term of type (setsetprop)prop.
Primitive. The name stricttotalorder_i is a term of type (setsetprop)prop.
Primitive. The name If_i is a term of type propsetsetset.
Primitive. The name exactly1of2 is a term of type proppropprop.
Primitive. The name exactly1of3 is a term of type propproppropprop.
Primitive. The name nIn is a term of type setsetprop.
Primitive. The name nSubq is a term of type setsetprop.
Primitive. The name UPair is a term of type setsetset.
Primitive. The name Sing is a term of type setset.
Primitive. The name binunion is a term of type setsetset.
Primitive. The name SetAdjoin is a term of type setsetset.
Primitive. The name famunion is a term of type set(setset)set.
Primitive. The name Sep is a term of type set(setprop)set.
Notation. {xA | B} is notation for Sep Ax . B).
Primitive. The name ReplSep is a term of type set(setprop)(setset)set.
Notation. {B| xA, C} is notation for ReplSep Ax . C) (λ x . B).
Primitive. The name binintersect is a term of type setsetset.
Notation. We use as an infix operator with priority 340 and which associates to the left corresponding to applying term binintersect.
Primitive. The name setminus is a term of type setsetset.
Notation. We use as an infix operator with priority 350 and no associativity corresponding to applying term setminus.
Primitive. The name inj is a term of type setset(setset)prop.
Primitive. The name bij is a term of type setset(setset)prop.
Primitive. The name atleastp is a term of type setsetprop.
Primitive. The name equip is a term of type setsetprop.
Primitive. The name In_rec_G_i is a term of type (set(setset)set)setsetprop.
Primitive. The name In_rec_i is a term of type (set(setset)set)setset.
Primitive. The name ordsucc is a term of type setset.
Primitive. The name nat_p is a term of type setprop.
Primitive. The name nat_primrec is a term of type set(setsetset)setset.
Primitive. The name add_nat is a term of type setsetset.
Primitive. The name mul_nat is a term of type setsetset.
Primitive. The name ordinal is a term of type setprop.
Primitive. The name V_ is a term of type setset.
Primitive. The name Inj1 is a term of type setset.
Primitive. The name Inj0 is a term of type setset.
Primitive. The name Unj is a term of type setset.
Primitive. The name combine_funcs is a term of type setset(setset)(setset)setset.
Primitive. The name setsum is a term of type setsetset.
Primitive. The name proj0 is a term of type setset.
Primitive. The name proj1 is a term of type setset.
Primitive. The name binrep is a term of type setsetset.
Primitive. The name lam is a term of type set(setset)set.
Primitive. The name setprod is a term of type setsetset.
Primitive. The name ap is a term of type setsetset.
Primitive. The name setsum_p is a term of type setprop.
Primitive. The name tuple_p is a term of type setsetprop.
Primitive. The name Pi is a term of type set(setset)set.
Primitive. The name setexp is a term of type setsetset.
Primitive. The name Sep2 is a term of type set(setset)(setsetprop)set.
Primitive. The name set_of_pairs is a term of type setprop.
Primitive. The name lam2 is a term of type set(setset)(setsetset)set.
Primitive. The name PNoEq_ is a term of type set(setprop)(setprop)prop.
Primitive. The name PNoLt_ is a term of type set(setprop)(setprop)prop.
Primitive. The name PNoLt is a term of type set(setprop)set(setprop)prop.
Primitive. The name PNoLe is a term of type set(setprop)set(setprop)prop.
Primitive. The name PNo_downc is a term of type (set(setprop)prop)set(setprop)prop.
Primitive. The name PNo_upc is a term of type (set(setprop)prop)set(setprop)prop.
Primitive. The name SNoElts_ is a term of type setset.
Primitive. The name SNo_ is a term of type setsetprop.
Primitive. The name PSNo is a term of type set(setprop)set.
Primitive. The name SNo is a term of type setprop.
Primitive. The name SNoLev is a term of type setset.
Primitive. The name SNoEq_ is a term of type setsetsetprop.
Primitive. The name SNoLt is a term of type setsetprop.
Primitive. The name SNoLe is a term of type setsetprop.
Primitive. The name binop_on is a term of type set(setsetset)prop.
Primitive. The name Loop is a term of type set(setsetset)(setsetset)(setsetset)setprop.
Primitive. The name Loop_with_defs is a term of type set(setsetset)(setsetset)(setsetset)set(setsetset)(setsetsetset)(setsetset)(setsetsetset)(setsetsetset)(setsetset)(setsetset)(setsetset)(setsetset)prop.
Primitive. The name Loop_with_defs_cex1 is a term of type set(setsetset)(setsetset)(setsetset)set(setsetset)(setsetsetset)(setsetset)(setsetsetset)(setsetsetset)(setsetset)(setsetset)(setsetset)(setsetset)prop.
Primitive. The name Loop_with_defs_cex2 is a term of type set(setsetset)(setsetset)(setsetset)set(setsetset)(setsetsetset)(setsetset)(setsetsetset)(setsetsetset)(setsetset)(setsetset)(setsetset)(setsetset)prop.
Primitive. The name combinator is a term of type setprop.
Primitive. The name combinator_equiv is a term of type setsetprop.
Primitive. The name equip_mod is a term of type setsetsetprop.
L358
Axiom. (False_def) We take the following as an axiom:
False = (∀P : prop, P)
L360
Axiom. (True_def) We take the following as an axiom:
True = (∀X0 : prop, (X0X0))
L361
Axiom. (not_def) We take the following as an axiom:
not = (λA : propAFalse)
L362
Axiom. (and_def) We take the following as an axiom:
and = (λA B : prop∀P : prop, (ABP)P)
L363
Axiom. (or_def) We take the following as an axiom:
or = (λA B : prop∀P : prop, (AP)(BP)P)
L364
Axiom. (iff_def) We take the following as an axiom:
iff = (λA B : prop(AB) (BA))
L365
Axiom. (Subq_def) We take the following as an axiom:
Subq = (λX Y ⇒ ∀x : set, x Xx Y)
L366
Axiom. (TransSet_def) We take the following as an axiom:
TransSet = (λU : set∀X : set, X UX U)
L367
Axiom. (atleast2_def) We take the following as an axiom:
atleast2 = (λX ⇒ ∃y, y X ¬ (X 𝒫 y))
L368
Axiom. (atleast3_def) We take the following as an axiom:
atleast3 = (λX ⇒ ∃Y, Y X (¬ (X Y) atleast2 Y))
L369
Axiom. (atleast4_def) We take the following as an axiom:
atleast4 = (λX ⇒ ∃Y, Y X (¬ (X Y) atleast3 Y))
L370
Axiom. (atleast5_def) We take the following as an axiom:
atleast5 = (λX ⇒ ∃Y, Y X (¬ (X Y) atleast4 Y))
L371
Axiom. (atleast6_def) We take the following as an axiom:
atleast6 = (λX ⇒ ∃Y, Y X (¬ (X Y) atleast5 Y))
L372
Axiom. (exactly2_def) We take the following as an axiom:
L373
Axiom. (exactly3_def) We take the following as an axiom:
L374
Axiom. (exactly4_def) We take the following as an axiom:
L375
Axiom. (exactly5_def) We take the following as an axiom:
L376
Axiom. (exu_i_def) We take the following as an axiom:
exu_i = (λX0 : setprop(and (∃X1 : set, (X0 X1)) (∀X1 : set, (∀X2 : set, ((X0 X1)((X0 X2)(X1 = X2)))))))
L377
Axiom. (reflexive_i_def) We take the following as an axiom:
reflexive_i = (λX0 : setsetprop(∀X1 : set, (X0 X1 X1)))
L378
Axiom. (irreflexive_i_def) We take the following as an axiom:
irreflexive_i = (λX0 : setsetprop(∀X1 : set, (not (X0 X1 X1))))
L379
Axiom. (symmetric_i_def) We take the following as an axiom:
symmetric_i = (λX0 : setsetprop(∀X1 : set, (∀X2 : set, ((X0 X1 X2)(X0 X2 X1)))))
L380
Axiom. (antisymmetric_i_def) We take the following as an axiom:
antisymmetric_i = (λX0 : setsetprop(∀X1 : set, (∀X2 : set, ((X0 X1 X2)((X0 X2 X1)(X1 = X2))))))
L381
Axiom. (transitive_i_def) We take the following as an axiom:
transitive_i = (λX0 : setsetprop(∀X1 : set, (∀X2 : set, (∀X3 : set, ((X0 X1 X2)((X0 X2 X3)(X0 X1 X3)))))))
L382
Axiom. (eqreln_i_def) We take the following as an axiom:
eqreln_i = (λX0 : setsetprop(and (and (reflexive_i X0) (symmetric_i X0)) (transitive_i X0)))
L383
Axiom. (per_i_def) We take the following as an axiom:
per_i = (λX0 : setsetprop(and (symmetric_i X0) (transitive_i X0)))
L384
Axiom. (linear_i_def) We take the following as an axiom:
linear_i = (λX0 : setsetprop(∀X1 : set, (∀X2 : set, (or (X0 X1 X2) (X0 X2 X1)))))
L385
Axiom. (trichotomous_or_i_def) We take the following as an axiom:
trichotomous_or_i = (λX0 : setsetprop(∀X1 : set, (∀X2 : set, (or (or (X0 X1 X2) (X1 = X2)) (X0 X2 X1)))))
L386
Axiom. (partialorder_i_def) We take the following as an axiom:
partialorder_i = (λX0 : setsetprop(and (and (reflexive_i X0) (antisymmetric_i X0)) (transitive_i X0)))
L387
Axiom. (totalorder_i_def) We take the following as an axiom:
totalorder_i = (λX0 : setsetprop(and (partialorder_i X0) (linear_i X0)))
L388
Axiom. (strictpartialorder_i_def) We take the following as an axiom:
strictpartialorder_i = (λX0 : setsetprop(and (irreflexive_i X0) (transitive_i X0)))
L389
Axiom. (stricttotalorder_i_def) We take the following as an axiom:
stricttotalorder_i = (λX0 : setsetprop(and (strictpartialorder_i X0) (trichotomous_or_i X0)))
L390
Axiom. (If_i_def) We take the following as an axiom:
If_i = (λX0 : prop(λX1 : set(λX2 : set(Eps_i (λX3 : set(or (and X0 (X3 = X1)) (and (not X0) (X3 = X2))))))))
L391
Axiom. (exactly1of2_def) We take the following as an axiom:
exactly1of2 = (λX0 : prop(λX1 : prop(or (and X0 (not X1)) (and (not X0) X1))))
L392
Axiom. (exactly1of3_def) We take the following as an axiom:
exactly1of3 = (λX0 : prop(λX1 : prop(λX2 : prop(or (and (exactly1of2 X0 X1) (not X2)) (and (and (not X0) (not X1)) X2)))))
L393
Axiom. (nIn_def) We take the following as an axiom:
nIn = (λX0 : set(λX1 : set(not (In X0 X1))))
L394
Axiom. (nSubq_def) We take the following as an axiom:
nSubq = (λX0 : set(λX1 : set(not (Subq X0 X1))))
L395
Axiom. (UPair_def) We take the following as an axiom:
UPair = (λX0 : set(λX1 : set(Repl (𝒫 (𝒫 )) (λX2 : set(If_i (In X2) X0 X1)))))
L396
Axiom. (Sing_def) We take the following as an axiom:
Sing = (λX0 : set(UPair X0 X0))
L397
Axiom. (binunion_def) We take the following as an axiom:
binunion = (λX0 : set(λX1 : set( (UPair X0 X1))))
L398
Axiom. (SetAdjoin_def) We take the following as an axiom:
SetAdjoin = (λX0 : set(λX1 : set(binunion X0 (Sing X1))))
L399
Axiom. (famunion_def) We take the following as an axiom:
famunion = (λX0 : set(λX1 : setset( (Repl X0 (λX2 : set(X1 X2))))))
L400
Axiom. (Sep_def) We take the following as an axiom:
Sep = (λX0 : set(λX1 : setprop(If_i (∃X2 : set, (and (In X2 X0) (X1 X2))) (Repl X0 (λX2 : set((λX3 : set(If_i (X1 X3) X3 (Eps_i (λX4 : set(and (In X4 X0) (X1 X4)))))) X2))) )))
L401
Axiom. (ReplSep_def) We take the following as an axiom:
ReplSep = (λX0 : set(λX1 : setprop(λX2 : setset(Repl (Sep X0 (λX3 : set(X1 X3))) (λX3 : set(X2 X3))))))
L402
Axiom. (binintersect_def) We take the following as an axiom:
binintersect = (λX0 : set(λX1 : set(Sep X0 (λX2 : set(In X2 X1)))))
L403
Axiom. (setminus_def) We take the following as an axiom:
setminus = (λX0 : set(λX1 : set(Sep X0 (λX2 : set(nIn X2 X1)))))
L404
Axiom. (inj_def) We take the following as an axiom:
inj = (λX0 : set(λX1 : set(λX2 : setset(and (∀X3 : set, ((In X3 X0)(In (X2 X3) X1))) (∀X3 : set, ((In X3 X0)(∀X4 : set, ((In X4 X0)(((X2 X3) = (X2 X4))(X3 = X4))))))))))
L405
Axiom. (bij_def) We take the following as an axiom:
bij = (λX0 : set(λX1 : set(λX2 : setset(and (inj X0 X1 X2) (∀X3 : set, ((In X3 X1)(∃X4 : set, (and (In X4 X0) ((X2 X4) = X3)))))))))
L406
Axiom. (atleastp_def) We take the following as an axiom:
atleastp = λX Y : set∃f : setset, inj X Y f
L407
Axiom. (equip_def) We take the following as an axiom:
equip = λX Y : set∃f : setset, bij X Y f
L408
Axiom. (In_rec_G_i_def) We take the following as an axiom:
In_rec_G_i = (λX0 : set(setset)set(λX1 : set(λX2 : set(∀X3 : setsetprop, ((∀X4 : set, (∀X5 : setset, ((∀X6 : set, ((In X6 X4)(X3 X6 (X5 X6))))(X3 X4 (X0 X4 X5)))))(X3 X1 X2))))))
L409
Axiom. (In_rec_i_def) We take the following as an axiom:
In_rec_i = (λX0 : set(setset)set(λX1 : set(Eps_i (λX2 : set(In_rec_G_i X0 X1 X2)))))
L410
Axiom. (ordsucc_def) We take the following as an axiom:
ordsucc = (λX0 : set(binunion X0 (Sing X0)))
L411
Axiom. (nat_p_def) We take the following as an axiom:
nat_p = (λX0 : set(∀X1 : setprop, ((X1 )((∀X2 : set, ((X1 X2)(X1 (ordsucc X2))))(X1 X0)))))
L412
Axiom. (nat_primrec_def) We take the following as an axiom:
nat_primrec = (λX0 : set(λX1 : setsetset(In_rec_i (λX2 : set(λX3 : setset(If_i (In ( X2) X2) (X1 ( X2) (X3 ( X2))) X0))))))
L413
Axiom. (add_nat_def) We take the following as an axiom:
add_nat = (λX0 : set(λX1 : set(nat_primrec X0 (λX2 : set(λX3 : set(ordsucc X3))) X1)))
L414
Axiom. (mul_nat_def) We take the following as an axiom:
mul_nat = (λX0 : set(λX1 : set(nat_primrec (λX2 : set(λX3 : set(add_nat X0 X3))) X1)))
L415
Axiom. (ordinal_def) We take the following as an axiom:
ordinal = (λX0 : set(and (TransSet X0) (∀X1 : set, ((In X1 X0)(TransSet X1)))))
L416
Axiom. (V__def) We take the following as an axiom:
V_ = (In_rec_i (λX0 : set(λX1 : setset(famunion X0 (λX2 : set(𝒫 (X1 X2)))))))
L417
Axiom. (Inj1_def) We take the following as an axiom:
Inj1 = (In_rec_i (λX0 : set(λX1 : setset(binunion (Sing ) (Repl X0 (λX2 : set(X1 X2)))))))
L418
Axiom. (Inj0_def) We take the following as an axiom:
Inj0 = (λX0 : set(Repl X0 (λX1 : set(Inj1 X1))))
L419
Axiom. (Unj_def) We take the following as an axiom:
Unj = (In_rec_i (λX0 : set(λX1 : setset(Repl (setminus X0 (Sing )) (λX2 : set(X1 X2))))))
L420
Axiom. (combine_funcs_def) We take the following as an axiom:
combine_funcs = (λX Y f g z ⇒ If_i (z = Inj0 (Unj z)) (f (Unj z)) (g (Unj z)))
L421
Axiom. (setsum_def) We take the following as an axiom:
setsum = (λX0 : set(λX1 : set(binunion (Repl X0 (λX2 : set(Inj0 X2))) (Repl X1 (λX2 : set(Inj1 X2))))))
L422
Axiom. (proj0_def) We take the following as an axiom:
proj0 = (λX0 : set(ReplSep X0 (λX1 : set(∃X2 : set, ((Inj0 X2) = X1))) (λX1 : set(Unj X1))))
L423
Axiom. (proj1_def) We take the following as an axiom:
proj1 = (λX0 : set(ReplSep X0 (λX1 : set(∃X2 : set, ((Inj1 X2) = X1))) (λX1 : set(Unj X1))))
L424
Axiom. (binrep_def) We take the following as an axiom:
binrep = λX Y ⇒ setsum X (𝒫 Y)
L425
Axiom. (lam_def) We take the following as an axiom:
lam = (λX0 : set(λX1 : setset(famunion X0 (λX2 : set(Repl (X1 X2) (λX3 : set(setsum X2 X3)))))))
L426
Axiom. (setprod_def) We take the following as an axiom:
setprod = (λX0 : set(λX1 : set(lam X0 (λX2 : setX1))))
L427
Axiom. (ap_def) We take the following as an axiom:
ap = (λX0 : set(λX1 : set(ReplSep X0 (λX2 : set(∃X3 : set, (X2 = (setsum X1 X3)))) (λX2 : set(proj1 X2)))))
L428
Axiom. (setsum_p_def) We take the following as an axiom:
setsum_p = (λX0 : set((setsum (ap X0 ) (ap X0 (ordsucc ))) = X0))
L429
Axiom. (tuple_p_def) We take the following as an axiom:
tuple_p = (λX0 : set(λX1 : set(∀X2 : set, ((In X2 X1)(∃X3 : set, (and (In X3 X0) (∃X4 : set, (X2 = (setsum X3 X4)))))))))
L430
Axiom. (Pi_def) We take the following as an axiom:
Pi = (λX0 : set(λX1 : setset(Sep (𝒫 (lam X0 (λX2 : set( (X1 X2))))) (λX2 : set(∀X3 : set, ((In X3 X0)(In (ap X2 X3) (X1 X3))))))))
L431
Axiom. (setexp_def) We take the following as an axiom:
setexp = (λX0 : set(λX1 : set(Pi X1 (λX2 : setX0))))
L432
Axiom. (Sep2_def) We take the following as an axiom:
Sep2 = (λX0 : set(λX1 : setset(λX2 : setsetprop(Sep (lam X0 (λX3 : set(X1 X3))) (λX3 : set(X2 (ap X3 ) (ap X3 (ordsucc ))))))))
L433
Axiom. (set_of_pairs_def) We take the following as an axiom:
set_of_pairs = (λX0 : set(∀X1 : set, ((In X1 X0)(∃X2 : set, (∃X3 : set, (X1 = (lam (ordsucc (ordsucc )) (λX4 : set(If_i (X4 = ) X2 X3)))))))))
L434
Axiom. (lam2_def) We take the following as an axiom:
lam2 = (λX0 : set(λX1 : setset(λX2 : setsetset(lam X0 (λX3 : set(lam (X1 X3) (λX4 : set(X2 X3 X4))))))))
L435
Axiom. (PNoEq__def) We take the following as an axiom:
PNoEq_ = (λX0 : set(λX1 : setprop(λX2 : setprop(∀X3 : set, ((In X3 X0)(iff (X1 X3) (X2 X3)))))))
L436
Axiom. (PNoLt__def) We take the following as an axiom:
PNoLt_ = (λX0 : set(λX1 : setprop(λX2 : setprop(∃X3 : set, (and (In X3 X0) (and (and (PNoEq_ X3 X1 X2) (not (X1 X3))) (X2 X3)))))))
L437
Axiom. (PNoLt_def) We take the following as an axiom:
PNoLt = (λX0 : set(λX1 : setprop(λX2 : set(λX3 : setprop(or (or (PNoLt_ (binintersect X0 X2) X1 X3) (and (and (In X0 X2) (PNoEq_ X0 X1 X3)) (X3 X0))) (and (and (In X2 X0) (PNoEq_ X2 X1 X3)) (not (X1 X2))))))))
L438
Axiom. (PNoLe_def) We take the following as an axiom:
PNoLe = (λX0 : set(λX1 : setprop(λX2 : set(λX3 : setprop(or (PNoLt X0 X1 X2 X3) (and (X0 = X2) (PNoEq_ X0 X1 X3)))))))
L439
Axiom. (PNo_downc_def) We take the following as an axiom:
PNo_downc = (λX0 : set(setprop)prop(λX1 : set(λX2 : setprop(∃X3 : set, (and (ordinal X3) (∃X4 : setprop, (and (X0 X3 X4) (PNoLe X1 X2 X3 X4))))))))
L440
Axiom. (PNo_upc_def) We take the following as an axiom:
PNo_upc = (λX0 : set(setprop)prop(λX1 : set(λX2 : setprop(∃X3 : set, (and (ordinal X3) (∃X4 : setprop, (and (X0 X3 X4) (PNoLe X3 X4 X1 X2))))))))
L441
Axiom. (SNoElts__def) We take the following as an axiom:
SNoElts_ = (λX0 : set(binunion X0 (Repl X0 (λX1 : set((λX2 : set(SetAdjoin X2 (Sing (ordsucc )))) X1)))))
L442
Axiom. (SNo__def) We take the following as an axiom:
SNo_ = (λX0 : set(λX1 : set(and (Subq X1 (SNoElts_ X0)) (∀X2 : set, ((In X2 X0)(exactly1of2 (In ((λX3 : set(SetAdjoin X3 (Sing (ordsucc )))) X2) X1) (In X2 X1)))))))
L443
Axiom. (PSNo_def) We take the following as an axiom:
PSNo = (λX0 : set(λX1 : setprop(binunion (Sep X0 (λX2 : set(X1 X2))) (ReplSep X0 (λX2 : set(not (X1 X2))) (λX2 : set((λX3 : set(SetAdjoin X3 (Sing (ordsucc )))) X2))))))
L444
Axiom. (SNo_def) We take the following as an axiom:
SNo = (λX0 : set(∃X1 : set, (and (ordinal X1) (SNo_ X1 X0))))
L445
Axiom. (SNoLev_def) We take the following as an axiom:
SNoLev = (λX0 : set(Eps_i (λX1 : set(and (ordinal X1) (SNo_ X1 X0)))))
L446
Axiom. (SNoEq__def) We take the following as an axiom:
SNoEq_ = (λX0 : set(λX1 : set(λX2 : set(PNoEq_ X0 (λX3 : set(In X3 X1)) (λX3 : set(In X3 X2))))))
L447
Axiom. (SNoLt_def) We take the following as an axiom:
SNoLt = (λX0 : set(λX1 : set(PNoLt (SNoLev X0) (λX2 : set(In X2 X0)) (SNoLev X1) (λX2 : set(In X2 X1)))))
L448
Axiom. (SNoLe_def) We take the following as an axiom:
SNoLe = (λX0 : set(λX1 : set(PNoLe (SNoLev X0) (λX2 : set(In X2 X0)) (SNoLev X1) (λX2 : set(In X2 X1)))))
L449
Axiom. (binop_on_def) We take the following as an axiom:
binop_on = (λX0 : set(λX1 : setsetset(∀X2 : set, ((In X2 X0)(∀X3 : set, ((In X3 X0)(In (X1 X2 X3) X0)))))))
L450
Axiom. (Loop_def) We take the following as an axiom:
Loop = (λX : set(λm b s : setsetset(λe : setbinop_on X m binop_on X b binop_on X s (∀xX, (m e x = x m x e = x)) (∀x yX, (b x (m x y) = y m x (b x y) = y s (m x y) y = x m (s x y) y = x)))))
L456
Axiom. (Loop_with_defs_def) We take the following as an axiom:
Loop_with_defs = λX m b s e K a T L R I1 J1 I2 J2 ⇒ Loop X m b s e (∀x yX, K x y = b (m y x) (m x y)) (∀x y zX, a x y z = b (m x (m y z)) (m (m x y) z)) (∀x uX, T x u = b x (m u x) I1 x u = m x (m u (b x e)) J1 x u = m (m (s e x) u) x I2 x u = m (b x u) (b (b x e) e) J2 x u = m (s e (s e x)) (s u x)) (∀x y uX, L x y u = b (m y x) (m y (m x u)) R x y u = s (m (m u x) y) (m x y))
L467
Axiom. (Loop_with_defs_cex1_def) We take the following as an axiom:
Loop_with_defs_cex1 = λX m b s e K a T L R I1 J1 I2 J2 ⇒ Loop_with_defs X m b s e K a T L R I1 J1 I2 J2 ∃u x y wX, ¬ (K (m (b (L x y u) e) u) w = e)
L470
Axiom. (Loop_with_defs_cex2_def) We take the following as an axiom:
Loop_with_defs_cex2 = λX m b s e K a T L R I1 J1 I2 J2 ⇒ Loop_with_defs X m b s e K a T L R I1 J1 I2 J2 ∃u x y z wX, ¬ (a w (m (s e u) (R x y u)) z = e)
L473
Axiom. (combinator_def) We take the following as an axiom:
combinator = λX ⇒ ∀p : setprop, p (Inj0 )p (Inj0 (𝒫 ))(∀Y Z, p Yp Zp (Inj1 (setsum Y Z)))p X
L478
Axiom. (combinator_equiv_def) We take the following as an axiom:
combinator_equiv = λX Y ⇒ ∀r : setsetprop, ((λK S : setλAp : setsetsetper_i r(∀Z, combinator Zr Z Z)(∀W1 Z1 W2 Z2, combinator W1combinator Z1combinator W2combinator Z2r W1 W2r Z1 Z2r (Ap W1 Z1) (Ap W2 Z2))(∀W Z, r (Ap (Ap K W) Z) W)(∀W Z V, r (Ap (Ap (Ap S W) Z) V) (Ap (Ap W V) (Ap Z V)))r X Y) (Inj0 ) (Inj0 (𝒫 )) (λW Z : setInj1 (setsum W Z)))
L490
Axiom. (equip_mod_def) We take the following as an axiom:
equip_mod = λX Y M ⇒ ∃Z V, (equip (setsum X Z) Y equip (setprod V Z) M) (equip (setsum Y Z) X equip (setprod V Z) M)
L493
Axiom. (TrueI) We take the following as an axiom:
L495
Axiom. (FalseE) We take the following as an axiom:
False∀p : prop, p
L496
Axiom. (notE) We take the following as an axiom:
∀A : prop, ¬ AAFalse
L497
Axiom. (notI) We take the following as an axiom:
∀A : prop, (AFalse)¬ A
L498
Axiom. (andE) We take the following as an axiom:
∀A B : prop, A B∀p : prop, (ABp)p
L499
Axiom. (andI) We take the following as an axiom:
∀A B : prop, ABA B
L500
Axiom. (orE) We take the following as an axiom:
∀A B : prop, A B∀p : prop, (Ap)(Bp)p
L501
Axiom. (orIL) We take the following as an axiom:
∀A B : prop, AA B
L502
Axiom. (orIR) We take the following as an axiom:
∀A B : prop, BA B
L503
Axiom. (xm) We take the following as an axiom:
∀A : prop, A ¬ A
L504
Axiom. (xmcases) We take the following as an axiom:
∀A p : prop, (Ap)(¬ Ap)p
L505
Axiom. (iffE) We take the following as an axiom:
∀A B : prop, (A B)∀p : prop, (ABp)(¬ A¬ Bp)p
L506
Axiom. (iffI) We take the following as an axiom:
∀A B : prop, (AB)(BA)(A B)
Notation. We use as an infix operator with priority 502 and no associativity corresponding to applying term nIn.
Notation. We use as an infix operator with priority 502 and no associativity corresponding to applying term nSubq.
L513
Axiom. (dnegI) We take the following as an axiom:
∀p : prop, p¬ ¬ p
L515
Axiom. (contra) We take the following as an axiom:
∀p : prop, (¬ pFalse)p
L516
Axiom. (keepcopy) We take the following as an axiom:
∀p : prop, (¬ pp)p
L517
Axiom. (orI_contra) We take the following as an axiom:
∀p q : prop, (¬ p¬ qFalse)p q
L518
Axiom. (orI_imp1) We take the following as an axiom:
∀p q : prop, (pq)¬ p q
L519
Axiom. (orI_imp2) We take the following as an axiom:
∀p q : prop, (qp)p ¬ q
L520
Axiom. (tab_neg_True) We take the following as an axiom:
L521
Axiom. (tab_pos_and) We take the following as an axiom:
∀A B : prop, (A B)(ABFalse)False
L522
Axiom. (tab_pos_or) We take the following as an axiom:
∀A B : prop, (A B)(AFalse)(BFalse)False
L523
Axiom. (tab_pos_imp) We take the following as an axiom:
∀A B : prop, (AB)(¬ AFalse)(BFalse)False
L524
Axiom. (tab_pos_iff) We take the following as an axiom:
∀A B : prop, (A B)(ABFalse)(¬ A¬ BFalse)False
L525
Axiom. (tab_neg_imp) We take the following as an axiom:
∀A B : prop, ¬ (AB)(A¬ BFalse)False
L526
Axiom. (tab_neg_and) We take the following as an axiom:
∀A B : prop, ¬ (A B)(¬ AFalse)(¬ BFalse)False
L527
Axiom. (tab_neg_or) We take the following as an axiom:
∀A B : prop, ¬ (A B)(¬ A¬ BFalse)False
L528
Axiom. (tab_neg_iff) We take the following as an axiom:
∀A B : prop, ¬ (A B)(A¬ BFalse)(¬ ABFalse)False
L529
Axiom. (prop_ext_2) We take the following as an axiom:
∀A B : prop, (AB)(BA)A = B
L530
Axiom. (eqo_iff) We take the following as an axiom:
∀A B : prop, (A = B)(A B)
L531
Axiom. (tab_pos_eqo) We take the following as an axiom:
∀A B : prop, (A = B)(ABFalse)(¬ A¬ BFalse)False
L532
Axiom. (tab_neg_eqo) We take the following as an axiom:
∀A B : prop, ¬ (A = B)(A¬ BFalse)(¬ ABFalse)False
L533
Axiom. (tab_pos_all_i) We take the following as an axiom:
∀P : setprop, ∀Y, (∀x, P x)(P YFalse)False
L534
Axiom. (tab_neg_all_i) We take the following as an axiom:
∀P : setprop, ¬ (∀x, P x)(∀y, ¬ P yFalse)False
L535
Axiom. (tab_pos_ex_i) We take the following as an axiom:
∀P : setprop, (∃x, P x)(∀y, P yFalse)False
L536
Axiom. (tab_mat_i_o) We take the following as an axiom:
∀P : setprop, ∀X1 Y1, P X1¬ P Y1(¬ (X1 = Y1)False)False
L537
Axiom. (tab_mat_i_i_o) We take the following as an axiom:
∀P : setsetprop, ∀X1 X2 Y1 Y2, P X1 X2¬ P Y1 Y2(¬ (X1 = Y1)False)(¬ (X2 = Y2)False)False
L538
Axiom. (tab_confront) We take the following as an axiom:
∀X Y Z W, X = Y¬ (Z = W)(¬ (X = Z)¬ (Y = Z)False)(¬ (X = W)¬ (Y = W)False)False
L539
Axiom. (f_equal_i_i) We take the following as an axiom:
∀F : setset, ∀X1 Y1, X1 = Y1F X1 = F Y1
L540
Axiom. (tab_dec_i) We take the following as an axiom:
∀F : setset, ∀X1 Y1, ¬ (F X1 = F Y1)(¬ (X1 = Y1)False)False
L541
Axiom. (f_equal_i_i_i) We take the following as an axiom:
∀F : setsetset, ∀X1 Y1 X2 Y2, X1 = Y1X2 = Y2F X1 X2 = F Y1 Y2
L542
Axiom. (tab_dec_i_i) We take the following as an axiom:
∀F : setsetset, ∀X1 Y1 X2 Y2, ¬ (F X1 X2 = F Y1 Y2)(¬ (X1 = Y1)False)(¬ (X2 = Y2)False)False
L543
Axiom. (tab_pos_eqf_i_i) We take the following as an axiom:
∀F G : setset, ∀X, (F = G)(F X = G XFalse)False
L544
Axiom. (tab_pos_neqf_i_i) We take the following as an axiom:
∀F G : setset, ¬ (F = G)(∀x, ¬ (F x = G x)False)False
L545
Axiom. (andEL) We take the following as an axiom:
∀A B : prop, A BA
L546
Axiom. (andER) We take the following as an axiom:
∀A B : prop, A BB
L547
Axiom. (iffEL) We take the following as an axiom:
∀A B : prop, (A B)AB
L548
Axiom. (iffER) We take the following as an axiom:
∀A B : prop, (A B)BA
L549
Axiom. (exandI_i) We take the following as an axiom:
∀P Q : setprop, ∀x, P xQ x(∃x, P x Q x)
L550
Axiom. (exandE_i) We take the following as an axiom:
∀P Q : setprop, (∃x, P x Q x)∀p : prop, (∀x, P xQ xp)p
L551
Axiom. (SubqI) We take the following as an axiom:
∀A B, (∀xA, x B)Subq A B
L552
Axiom. (SubqE) We take the following as an axiom:
∀A B, Subq A B(∀xA, x B)
L553
Axiom. (tab_pos_Subq) We take the following as an axiom:
∀A B, A B((∀xA, x B)False)False
L554
Axiom. (tab_neg_Subq) We take the following as an axiom:
∀A B, ¬ (A B)(¬ (∀xA, x B)False)False
L555
Axiom. (TransSetI) We take the following as an axiom:
∀U, (∀XU, X U)TransSet U
L556
Axiom. (TransSetE) We take the following as an axiom:
∀U, TransSet U∀XU, X U
L557
Axiom. (atleast2_I) We take the following as an axiom:
∀X y, y X(¬ (X 𝒫 y))atleast2 X
L558
Axiom. (atleast2_E) We take the following as an axiom:
∀X, atleast2 X∃y, y X ¬ (X 𝒫 y)
L559
Axiom. (atleast3_I) We take the following as an axiom:
∀X Y, Y X(¬ (X Y))atleast2 Yatleast3 X
L560
Axiom. (atleast3_E) We take the following as an axiom:
∀X, atleast3 X∃Y, Y X (¬ (X Y) atleast2 Y)
L561
Axiom. (atleast4_I) We take the following as an axiom:
∀X Y, Y X(¬ (X Y))atleast3 Yatleast4 X
L562
Axiom. (atleast4_E) We take the following as an axiom:
∀X, atleast4 X∃Y, Y X (¬ (X Y) atleast3 Y)
L563
Axiom. (atleast5_I) We take the following as an axiom:
∀X Y, Y X(¬ (X Y))atleast4 Yatleast5 X
L564
Axiom. (atleast5_E) We take the following as an axiom:
∀X, atleast5 X∃Y, Y X (¬ (X Y) atleast4 Y)
L565
Axiom. (atleast6_I) We take the following as an axiom:
∀X Y, Y X(¬ (X Y))atleast5 Yatleast6 X
L566
Axiom. (atleast6_E) We take the following as an axiom:
∀X, atleast6 X∃Y, Y X (¬ (X Y) atleast5 Y)
L567
Axiom. (exactly2_I) We take the following as an axiom:
∀X, atleast2 X¬ atleast3 Xexactly2 X
L568
Axiom. (exactly2_E) We take the following as an axiom:
∀X, exactly2 Xatleast2 X ¬ atleast3 X
L569
Axiom. (exactly3_I) We take the following as an axiom:
∀X, atleast3 X¬ atleast4 Xexactly3 X
L570
Axiom. (exactly3_E) We take the following as an axiom:
∀X, exactly3 Xatleast3 X ¬ atleast4 X
L571
Axiom. (exactly4_I) We take the following as an axiom:
∀X, atleast4 X¬ atleast5 Xexactly4 X
L572
Axiom. (exactly4_E) We take the following as an axiom:
∀X, exactly4 Xatleast4 X ¬ atleast5 X
L573
Axiom. (exactly5_I) We take the following as an axiom:
∀X, atleast5 X¬ atleast6 Xexactly5 X
L574
Axiom. (exactly5_E) We take the following as an axiom:
∀X, exactly5 Xatleast5 X ¬ atleast6 X
L575
Axiom. (nIn_I) We take the following as an axiom:
∀X Y, ¬ In X YnIn X Y
L576
Axiom. (nIn_E) We take the following as an axiom:
∀X Y, nIn X Y¬ In X Y
L577
Axiom. (nIn_I2) We take the following as an axiom:
∀X Y, (In X YFalse)nIn X Y
L578
Axiom. (nIn_E2) We take the following as an axiom:
∀X Y, nIn X YIn X YFalse
L579
Axiom. (contra_In) We take the following as an axiom:
∀X Y, (X YFalse)X Y
L580
Axiom. (neg_nIn) We take the following as an axiom:
∀X Y, ¬ (X Y)X Y
L581
Axiom. (nSubq_I) We take the following as an axiom:
∀X Y, ¬ Subq X YnSubq X Y
L582
Axiom. (nSubq_E) We take the following as an axiom:
∀X Y, nSubq X Y¬ Subq X Y
L583
Axiom. (nSubq_I2) We take the following as an axiom:
∀X Y, (Subq X YFalse)nSubq X Y
L584
Axiom. (nSubq_E2) We take the following as an axiom:
∀X Y, nSubq X YSubq X YFalse
L585
Axiom. (neg_nSubq) We take the following as an axiom:
∀X Y, ¬ (X Y)X Y
L586
Axiom. (contra_Subq) We take the following as an axiom:
∀X Y, (X YFalse)X Y
L587
Axiom. (Subq_ref) We take the following as an axiom:
∀X : set, X X
L588
Axiom. (Subq_tra) We take the following as an axiom:
∀X Y Z : set, X YY ZX Z
L589
Axiom. (Subq_contra) We take the following as an axiom:
∀X Y z : set, X Yz Yz X
L590
Axiom. (EmptyE) We take the following as an axiom:
∀x : set, x False
L591
Axiom. (nIn_Empty) We take the following as an axiom:
∀x : set, x
L592
Axiom. (Subq_Empty) We take the following as an axiom:
∀X : set, X
L593
Axiom. (Empty_Subq_eq) We take the following as an axiom:
∀X : set, X X =
L594
Axiom. (Empty_eq) We take the following as an axiom:
∀X : set, (∀x, x X)X =
L595
Axiom. (UnionE) We take the following as an axiom:
∀X x : set, x ( X)∃Y : set, x Y Y X
L596
Axiom. (UnionE2) We take the following as an axiom:
∀X x : set, x ( X)∀p : prop, (∀Y : set, x YY Xp)p
L597
Axiom. (UnionI) We take the following as an axiom:
∀X x Y : set, x YY Xx ( X)
L598
Axiom. (tab_pos_Union) We take the following as an axiom:
∀X x, x X(∀Y, x YY XFalse)False
L599
Axiom. (tab_neg_Union) We take the following as an axiom:
∀X x Y, x X(x YFalse)(Y XFalse)False
L600
Axiom. (Union_Empty) We take the following as an axiom:
L601
Axiom. (PowerE) We take the following as an axiom:
∀X Y : set, Y 𝒫 XY X
L602
Axiom. (PowerI) We take the following as an axiom:
∀X Y : set, Y XY 𝒫 X
L603
Axiom. (tab_pos_Power) We take the following as an axiom:
∀X Y, Y 𝒫 X(Y XFalse)False
L604
Axiom. (tab_neg_Power) We take the following as an axiom:
∀X Y, Y 𝒫 X(Y XFalse)False
L605
Axiom. (Empty_In_Power) We take the following as an axiom:
∀X : set, 𝒫 X
L606
Axiom. (Self_In_Power) We take the following as an axiom:
∀X : set, X 𝒫 X
L607
Axiom. (ReplE) We take the following as an axiom:
∀X : set, ∀F : setset, ∀y : set, y {F x|xX}∃x : set, x X y = F x
L608
Axiom. (ReplE2) We take the following as an axiom:
∀X : set, ∀F : setset, ∀y : set, y {F x|xX}∀p : prop, (∀x : set, x Xy = F xp)p
L609
Axiom. (ReplI) We take the following as an axiom:
∀X : set, ∀F : setset, ∀x : set, x XF x {F x|xX}
L610
Axiom. (tab_pos_Repl) We take the following as an axiom:
∀X, ∀F : setset, ∀y, y {F x|xX}(∀x, x Xy = F xFalse)False
L611
Axiom. (tab_neg_Repl) We take the following as an axiom:
∀X, ∀F : setset, ∀y x, y {F x|xX}(x XFalse)(¬ (y = F x)False)False
L612
Axiom. (Repl_Empty) We take the following as an axiom:
∀F : setset, {F x|x} =
L613
Axiom. (ReplEq_ext_sub) We take the following as an axiom:
∀X, ∀F G : setset, (∀xX, F x = G x){F x|xX} {G x|xX}
L614
Axiom. (ReplEq_ext) We take the following as an axiom:
∀X, ∀F G : setset, (∀xX, F x = G x){F x|xX} = {G x|xX}
L615
Axiom. (set_ext_2) We take the following as an axiom:
∀A B, (∀x, x Ax B)(∀x, x Bx A)A = B
L617
Axiom. (neq_i_sym) We take the following as an axiom:
∀x y, ¬ (x = y)¬ (y = x)
L618
Axiom. (tab_neq_i_sym) We take the following as an axiom:
∀x y, ¬ (x = y)(¬ (y = x)False)False
L619
Axiom. (tab_Eps_i) We take the following as an axiom:
∀p : setprop, ((∀x, ¬ p x)False)(p (Eps_i p)False)False
L620
Axiom. (If_i_0) We take the following as an axiom:
∀p : prop, ∀x y, ¬ pIf_i p x y = y
L621
Axiom. (If_i_1) We take the following as an axiom:
∀p : prop, ∀x y, pIf_i p x y = x
L622
Axiom. (If_i_or) We take the following as an axiom:
∀p : prop, ∀x y, If_i p x y = x If_i p x y = y
L623
Axiom. (tab_If_i_lhs) We take the following as an axiom:
∀p : prop, ∀x y z, ¬ (If_i p x y = z)(p¬ (x = z)False)(¬ p¬ (y = z)False)False
L624
Axiom. (tab_If_i_rhs) We take the following as an axiom:
∀p : prop, ∀x y z, ¬ (z = If_i p x y)(p¬ (z = x)False)(¬ p¬ (z = y)False)False
Notation. {x,y} is notation for UPair x y.
L626
Axiom. (UPairE) We take the following as an axiom:
∀x y z : set, x {y,z}x = y x = z
L627
Axiom. (UPairE_cases) We take the following as an axiom:
∀x y z : set, x {y,z}∀p : prop, (x = yp)(x = zp)p
L628
Axiom. (UPairI1) We take the following as an axiom:
∀y z : set, y {y,z}
L629
Axiom. (UPairI2) We take the following as an axiom:
∀y z : set, z {y,z}
L630
Axiom. (UPair_com) We take the following as an axiom:
∀x y : set, {x,y} = {y,x}
L631
Axiom. (tab_pos_UPair) We take the following as an axiom:
∀x y z, z {x,y}(z = xFalse)(z = yFalse)False
L632
Axiom. (tab_neg_UPair) We take the following as an axiom:
∀x y z, z {x,y}(¬ (z = x)¬ (z = y)False)False
Notation. {x} is notation for Sing x.
L634
Axiom. (SingI) We take the following as an axiom:
∀x : set, x {x}
L635
Axiom. (SingE) We take the following as an axiom:
∀x y : set, y {x}y = x
L636
Axiom. (tab_pos_Sing) We take the following as an axiom:
∀x y, y {x}(y = xFalse)False
L637
Axiom. (tab_neg_Sing) We take the following as an axiom:
∀x y, y {x}(¬ (y = x)False)False
Notation. We use as an infix operator with priority 345 and which associates to the left corresponding to applying term binunion.
L640
Axiom. (binunionI1) We take the following as an axiom:
∀X Y z : set, z Xz X Y
L641
Axiom. (binunionI2) We take the following as an axiom:
∀X Y z : set, z Yz X Y
L642
Axiom. (binunionE) We take the following as an axiom:
∀X Y z : set, z X Yz X z Y
L643
Axiom. (binunionE_cases) We take the following as an axiom:
∀X Y z : set, z X Y∀p : prop, (z Xp)(z Yp)p
L644
Axiom. (tab_pos_binunion) We take the following as an axiom:
∀X Y z, z X Y(z XFalse)(z YFalse)False
L645
Axiom. (tab_neg_binunion) We take the following as an axiom:
∀X Y z, z X Y(z Xz YFalse)False
Notation. We now use the set enumeration notation {...,...,...} in general. If 0 elements are given, then is used to form the corresponding term. If 1 element is given, then Sing is used to form the corresponding term. If 2 elements are given, then UPair is used to form the corresponding term. If more than elements are given, then SetAdjoin is used to reduce to the case with one fewer elements.
L647
Axiom. (Power_0_Sing_0) We take the following as an axiom:
L648
Axiom. (Repl_UPair) We take the following as an axiom:
∀F : setset, ∀x y : set, {F z|z{x,y}} = {F x,F y}
L649
Axiom. (Repl_Sing) We take the following as an axiom:
∀F : setset, ∀x : set, {F z|z{x}} = {F x}
Notation. We use x [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using famunion.
L653
Axiom. (famunionI) We take the following as an axiom:
∀X : set, ∀F : (setset), ∀x y : set, x Xy F xy xXF x
L654
Axiom. (famunionE) We take the following as an axiom:
∀X : set, ∀F : (setset), ∀y : set, y (xXF x)∃xX, y F x
L655
Axiom. (famunionE2) We take the following as an axiom:
∀X : set, ∀F : (setset), ∀y : set, y (xXF x)∀p : prop, (∀x, x Xy F xp)p
L656
Axiom. (UnionEq_famunionId) We take the following as an axiom:
∀X : set, X = xXx
L657
Axiom. (ReplEq_famunion_Sing) We take the following as an axiom:
∀X : set, ∀F : (setset), {F x|xX} = xX{F x}
L658
Axiom. (tab_pos_famunion) We take the following as an axiom:
∀X, ∀F : setset, ∀z, (z xXF x)(∀x, x Xz F xFalse)False
L659
Axiom. (tab_neg_famunion) We take the following as an axiom:
∀X, ∀F : setset, ∀z x, (z xXF x)(x XFalse)(z F xFalse)False
Notation. if cond then T else E is notation corresponding to If_i type cond T E where type is the inferred type of T.
Beginning of Section PropN
L664
Variable P1 P2 P3 : prop
L666
Axiom. (and3I) We take the following as an axiom:
P1P2P3P1 P2 P3
L668
Axiom. (and3E) We take the following as an axiom:
P1 P2 P3(∀p : prop, (P1P2P3p)p)
L670
Axiom. (or3I1) We take the following as an axiom:
P1P1 P2 P3
L672
Axiom. (or3I2) We take the following as an axiom:
P2P1 P2 P3
L674
Axiom. (or3I3) We take the following as an axiom:
P3P1 P2 P3
L676
Axiom. (or3E) We take the following as an axiom:
P1 P2 P3(∀p : prop, (P1p)(P2p)(P3p)p)
L678
Variable P4 : prop
L680
Axiom. (and4I) We take the following as an axiom:
P1P2P3P4P1 P2 P3 P4
L682
Axiom. (and4E) We take the following as an axiom:
P1 P2 P3 P4(∀p : prop, (P1P2P3P4p)p)
L684
Axiom. (or4I1) We take the following as an axiom:
P1P1 P2 P3 P4
L686
Axiom. (or4I2) We take the following as an axiom:
P2P1 P2 P3 P4
L688
Axiom. (or4I3) We take the following as an axiom:
P3P1 P2 P3 P4
L690
Axiom. (or4I4) We take the following as an axiom:
P4P1 P2 P3 P4
L692
Axiom. (or4E) We take the following as an axiom:
P1 P2 P3 P4(∀p : prop, (P1p)(P2p)(P3p)(P4p)p)
L694
Variable P5 : prop
L696
Axiom. (and5I) We take the following as an axiom:
P1P2P3P4P5P1 P2 P3 P4 P5
L698
Axiom. (and5E) We take the following as an axiom:
P1 P2 P3 P4 P5(∀p : prop, (P1P2P3P4P5p)p)
L700
Axiom. (or5I1) We take the following as an axiom:
P1P1 P2 P3 P4 P5
L702
Axiom. (or5I2) We take the following as an axiom:
P2P1 P2 P3 P4 P5
L704
Axiom. (or5I3) We take the following as an axiom:
P3P1 P2 P3 P4 P5
L706
Axiom. (or5I4) We take the following as an axiom:
P4P1 P2 P3 P4 P5
L708
Axiom. (or5I5) We take the following as an axiom:
P5P1 P2 P3 P4 P5
L710
Axiom. (or5E) We take the following as an axiom:
P1 P2 P3 P4 P5(∀p : prop, (P1p)(P2p)(P3p)(P4p)(P5p)p)
L712
Variable P6 : prop
L714
Axiom. (and6I) We take the following as an axiom:
P1P2P3P4P5P6P1 P2 P3 P4 P5 P6
L716
Axiom. (and6E) We take the following as an axiom:
P1 P2 P3 P4 P5 P6(∀p : prop, (P1P2P3P4P5P6p)p)
L718
Variable P7 : prop
L720
Axiom. (and7I) We take the following as an axiom:
P1P2P3P4P5P6P7P1 P2 P3 P4 P5 P6 P7
L722
Axiom. (and7E) We take the following as an axiom:
P1 P2 P3 P4 P5 P6 P7(∀p : prop, (P1P2P3P4P5P6P7p)p)
End of Section PropN
L726
Axiom. (tab_neg_ex_i) We take the following as an axiom:
∀P : setprop, ∀Y, ¬ (∃x, P x)(¬ P YFalse)False
L728
Axiom. (Eps_i_R2) We take the following as an axiom:
∀P : setprop, (∃x, P x)P (Eps_i P)
L729
Axiom. (xmcases_In) We take the following as an axiom:
∀x X : set, ∀p : prop, (x Xp)(x Xp)p
L730
Axiom. (SepI) We take the following as an axiom:
∀X : set, ∀P : (setprop), ∀x : set, x XP xx {xX|P x}
L731
Axiom. (SepE) We take the following as an axiom:
∀X : set, ∀P : (setprop), ∀x : set, x {xX|P x}x X P x
L732
Axiom. (SepE_impred) We take the following as an axiom:
∀X : set, ∀P : (setprop), ∀x : set, x {xX|P x}∀q : prop, (x XP xq)q
L733
Axiom. (SepE1) We take the following as an axiom:
∀X : set, ∀P : (setprop), ∀x : set, x {xX|P x}x X
L734
Axiom. (SepE2) We take the following as an axiom:
∀X : set, ∀P : (setprop), ∀x : set, x {xX|P x}P x
L735
Axiom. (Sep_Subq) We take the following as an axiom:
∀X : set, ∀P : setprop, {xX|P x} X
L736
Axiom. (Sep_In_Power) We take the following as an axiom:
∀X : set, ∀P : setprop, {xX|P x} 𝒫 X
L737
Axiom. (tab_pos_Sep) We take the following as an axiom:
∀X, ∀P : setprop, ∀x, x {xX|P x}(x XP xFalse)False
L738
Axiom. (tab_neg_Sep) We take the following as an axiom:
∀X, ∀P : setprop, ∀x, x {xX|P x}(x XFalse)(¬ P xFalse)False
L739
Axiom. (ReplSepI) We take the following as an axiom:
∀X : set, ∀P : setprop, ∀F : setset, ∀x : set, x XP xF x {F x|xX, P x}
L740
Axiom. (ReplSepE) We take the following as an axiom:
∀X : set, ∀P : setprop, ∀F : setset, ∀y : set, y {F x|xX, P x}∃x : set, x X P x y = F x
L741
Axiom. (ReplSepE_impred) We take the following as an axiom:
∀X : set, ∀P : setprop, ∀F : setset, ∀y : set, y {F x|xX, P x}∀p : prop, (∀xX, P xy = F xp)p
L742
Axiom. (tab_pos_ReplSep) We take the following as an axiom:
∀X, ∀P : setprop, ∀F : setset, ∀y, y {F x|xX, P x}(∀x, x XP xy = F xFalse)False
L743
Axiom. (tab_neg_ReplSep) We take the following as an axiom:
∀X, ∀P : setprop, ∀F : setset, ∀y x, y {F x|xX, P x}(x XFalse)(¬ P xFalse)(¬ (y = F x)False)False
L744
Axiom. (binunion_asso) We take the following as an axiom:
∀X Y Z : set, X (Y Z) = (X Y) Z
L745
Axiom. (binunion_com) We take the following as an axiom:
∀X Y : set, X Y = Y X
L746
Axiom. (binunion_idl) We take the following as an axiom:
∀X : set, X = X
L747
Axiom. (binunion_idr) We take the following as an axiom:
∀X : set, X = X
L748
Axiom. (binunion_idem) We take the following as an axiom:
∀X : set, X X = X
L749
Axiom. (binunion_Subq_1) We take the following as an axiom:
∀X Y : set, X X Y
L750
Axiom. (binunion_Subq_2) We take the following as an axiom:
∀X Y : set, Y X Y
L751
Axiom. (binunion_Subq_min) We take the following as an axiom:
∀X Y Z : set, X ZY ZX Y Z
L752
Axiom. (Subq_binunion_eq) We take the following as an axiom:
∀X Y, (X Y) = (X Y = Y)
L753
Axiom. (binunion_nIn_I) We take the following as an axiom:
∀X Y z : set, z Xz Yz X Y
L754
Axiom. (binunion_nIn_E) We take the following as an axiom:
∀X Y z : set, z X Yz X z Y
L755
Axiom. (binunion_nIn_E_impred) We take the following as an axiom:
∀X Y z : set, z X Y∀p : prop, (z Xz Yp)p
L756
Axiom. (binintersectI) We take the following as an axiom:
∀X Y z, z Xz Yz X Y
L757
Axiom. (binintersectE) We take the following as an axiom:
∀X Y z, z X Yz X z Y
L758
Axiom. (binintersectE_impred) We take the following as an axiom:
∀X Y z, z X Y∀p : prop, (z Xz Yp)p
L759
Axiom. (binintersectE1) We take the following as an axiom:
∀X Y z, z X Yz X
L760
Axiom. (binintersectE2) We take the following as an axiom:
∀X Y z, z X Yz Y
L761
Axiom. (binintersect_Subq_1) We take the following as an axiom:
∀X Y : set, X Y X
L762
Axiom. (binintersect_Subq_2) We take the following as an axiom:
∀X Y : set, X Y Y
L763
Axiom. (binintersect_Subq_eq_1) We take the following as an axiom:
∀X Y, X YX Y = X
L764
Axiom. (binintersect_Subq_max) We take the following as an axiom:
∀X Y Z : set, Z XZ YZ X Y
L765
Axiom. (binintersect_asso) We take the following as an axiom:
∀X Y Z : set, X (Y Z) = (X Y) Z
L766
Axiom. (binintersect_com) We take the following as an axiom:
∀X Y : set, X Y = Y X
L767
Axiom. (binintersect_annil) We take the following as an axiom:
∀X : set, X =
L768
Axiom. (binintersect_annir) We take the following as an axiom:
∀X : set, X =
L769
Axiom. (binintersect_idem) We take the following as an axiom:
∀X : set, X X = X
L770
Axiom. (binintersect_binunion_distr) We take the following as an axiom:
∀X Y Z : set, X (Y Z) = X Y X Z
L771
Axiom. (binunion_binintersect_distr) We take the following as an axiom:
∀X Y Z : set, X Y Z = (X Y) (X Z)
L772
Axiom. (Subq_binintersection_eq) We take the following as an axiom:
∀X Y : set, (X Y) = (X Y = X)
L773
Axiom. (binintersect_nIn_I1) We take the following as an axiom:
∀X Y z : set, z Xz X Y
L774
Axiom. (binintersect_nIn_I2) We take the following as an axiom:
∀X Y z : set, z Yz X Y
L775
Axiom. (binintersect_nIn_E) We take the following as an axiom:
∀X Y z : set, z X Yz X z Y
L776
Axiom. (binintersect_nIn_E_impred) We take the following as an axiom:
∀X Y z, z X Y∀p : prop, (z Xp)(z Yp)p
L777
Axiom. (tab_pos_binintersect) We take the following as an axiom:
∀X Y x, x X Y(x Xx YFalse)False
L778
Axiom. (tab_neg_binintersect) We take the following as an axiom:
∀X Y x, x X Y(x XFalse)(x YFalse)False
L779
Axiom. (setminusI) We take the following as an axiom:
∀X Y z, (z X)(z Y)z X Y
L780
Axiom. (setminusE) We take the following as an axiom:
∀X Y z, (z X Y)z X z Y
L781
Axiom. (setminusE_impred) We take the following as an axiom:
∀X Y z, (z X Y)∀p : prop, (z Xz Yp)p
L782
Axiom. (setminusE1) We take the following as an axiom:
∀X Y z, (z X Y)z X
L783
Axiom. (setminusE2) We take the following as an axiom:
∀X Y z, (z X Y)z Y
L784
Axiom. (setminus_Subq) We take the following as an axiom:
∀X Y : set, X Y X
L785
Axiom. (setminus_Subq_contra) We take the following as an axiom:
∀X Y Z : set, Z YX Y X Z
L786
Axiom. (setminus_nIn_I1) We take the following as an axiom:
∀X Y z, z Xz X Y
L787
Axiom. (setminus_nIn_I2) We take the following as an axiom:
∀X Y z, z Yz X Y
L788
Axiom. (setminus_nIn_E) We take the following as an axiom:
∀X Y z, z X Yz X z Y
L789
Axiom. (setminus_nIn_E_impred) We take the following as an axiom:
∀X Y z, z X Y∀p : prop, (z Xp)(z Yp)p
L790
Axiom. (setminus_selfannih) We take the following as an axiom:
∀X : set, (X X) =
L791
Axiom. (setminus_binintersect) We take the following as an axiom:
∀X Y Z : set, X Y Z = (X Y) (X Z)
L792
Axiom. (setminus_binunion) We take the following as an axiom:
∀X Y Z : set, X Y Z = (X Y) Z
L793
Axiom. (binintersect_setminus) We take the following as an axiom:
∀X Y Z : set, (X Y) Z = X (Y Z)
L794
Axiom. (binunion_setminus) We take the following as an axiom:
∀X Y Z : set, X Y Z = (X Z) (Y Z)
L795
Axiom. (setminus_setminus) We take the following as an axiom:
∀X Y Z : set, X (Y Z) = (X Y) (X Z)
L796
Axiom. (setminus_annil) We take the following as an axiom:
∀X : set, X =
L797
Axiom. (setminus_idr) We take the following as an axiom:
∀X : set, X = X
L798
Axiom. (tab_pos_setminus) We take the following as an axiom:
∀X Y x, x X Y(x Xx YFalse)False
L799
Axiom. (tab_neg_setminus) We take the following as an axiom:
∀X Y x, x X Y(x XFalse)(x YFalse)False
L800
Axiom. (eq_sym_i) We take the following as an axiom:
∀x y : set, x = yy = x
L802
Axiom. (neq_sym_i) We take the following as an axiom:
∀x y : set, x yy x
L803
Axiom. (In_irref) We take the following as an axiom:
∀x, x x
L804
Axiom. (In_no2cycle) We take the following as an axiom:
∀x y, x yy xFalse
L805
Axiom. (In_no3cycle) We take the following as an axiom:
∀x y z, x yy zz xFalse
L806
Axiom. (ordsuccI1) We take the following as an axiom:
∀x : set, x ordsucc x
L807
Axiom. (ordsuccI1b) We take the following as an axiom:
∀x y : set, y xy ordsucc x
L808
Axiom. (ordsuccI2) We take the following as an axiom:
∀x : set, x ordsucc x
L809
Axiom. (ordsuccE) We take the following as an axiom:
∀x y : set, y ordsucc xy x y = x
L810
Axiom. (ordsuccE_impred) We take the following as an axiom:
∀x y : set, y ordsucc x∀p : prop, (y xp)(y = xp)p
Notation. Natural numbers 0,1,2,... are notation for the terms formed using as 0 and forming successors with ordsucc.
L812
Axiom. (neq_0_ordsucc) We take the following as an axiom:
∀a : set, 0 ordsucc a
L813
Axiom. (neq_ordsucc_0) We take the following as an axiom:
∀a : set, ordsucc a 0
L814
Axiom. (ordsucc_inj) We take the following as an axiom:
∀a b : set, ordsucc a = ordsucc ba = b
L815
Axiom. (ordsucc_inj_contra) We take the following as an axiom:
∀a b : set, a bordsucc a ordsucc b
L816
Axiom. (In_0_1) We take the following as an axiom:
L817
Axiom. (In_0_2) We take the following as an axiom:
L818
Axiom. (In_1_2) We take the following as an axiom:
L819
Axiom. (cases_1) We take the following as an axiom:
∀i1, ∀p : setprop, p 0p i
L820
Axiom. (cases_2) We take the following as an axiom:
∀i2, ∀p : setprop, p 0p 1p i
L821
Axiom. (cases_3) We take the following as an axiom:
∀i3, ∀p : setprop, p 0p 1p 2p i
L822
Axiom. (cases_4) We take the following as an axiom:
∀i4, ∀p : setprop, p 0p 1p 2p 3p i
L823
Axiom. (cases_5) We take the following as an axiom:
∀i5, ∀p : setprop, p 0p 1p 2p 3p 4p i
L824
Axiom. (cases_6) We take the following as an axiom:
∀i6, ∀p : setprop, p 0p 1p 2p 3p 4p 5p i
L825
Axiom. (cases_7) We take the following as an axiom:
∀i7, ∀p : setprop, p 0p 1p 2p 3p 4p 5p 6p i
L826
Axiom. (cases_8) We take the following as an axiom:
∀i8, ∀p : setprop, p 0p 1p 2p 3p 4p 5p 6p 7p i
L827
Axiom. (cases_9) We take the following as an axiom:
∀i9, ∀p : setprop, p 0p 1p 2p 3p 4p 5p 6p 7p 8p i
L828
Axiom. (neq_0_1) We take the following as an axiom:
L829
Axiom. (neq_1_0) We take the following as an axiom:
L830
Axiom. (neq_0_2) We take the following as an axiom:
L831
Axiom. (neq_2_0) We take the following as an axiom:
L832
Axiom. (neq_1_2) We take the following as an axiom:
L833
Axiom. (neq_2_1) We take the following as an axiom:
L834
Axiom. (Subq_0_0) We take the following as an axiom:
L835
Axiom. (Subq_0_1) We take the following as an axiom:
L836
Axiom. (Subq_0_2) We take the following as an axiom:
L837
Axiom. (Subq_1_1) We take the following as an axiom:
L838
Axiom. (Subq_1_2) We take the following as an axiom:
L839
Axiom. (Subq_2_2) We take the following as an axiom:
L840
Axiom. (Subq_1_Sing0) We take the following as an axiom:
L841
Axiom. (Subq_Sing0_1) We take the following as an axiom:
L842
Axiom. (eq_1_Sing0) We take the following as an axiom:
L843
Axiom. (Subq_2_UPair01) We take the following as an axiom:
L844
Axiom. (Subq_UPair01_2) We take the following as an axiom:
L845
Axiom. (eq_2_UPair01) We take the following as an axiom:
L846
Axiom. (nat_0) We take the following as an axiom:
L847
Axiom. (nat_ordsucc) We take the following as an axiom:
∀n : set, nat_p nnat_p (ordsucc n)
L848
Axiom. (nat_1) We take the following as an axiom:
L849
Axiom. (nat_2) We take the following as an axiom:
L850
Axiom. (nat_0_in_ordsucc) We take the following as an axiom:
∀n, nat_p n0 ordsucc n
L851
Axiom. (nat_ordsucc_in_ordsucc) We take the following as an axiom:
∀n, nat_p n∀mn, ordsucc m ordsucc n
L852
Axiom. (nat_ind) We take the following as an axiom:
∀p : setprop, p 0(∀n, nat_p np np (ordsucc n))∀n, nat_p np n
L853
Axiom. (nat_inv) We take the following as an axiom:
∀n, nat_p nn = 0 ∃x, nat_p x n = ordsucc x
L854
Axiom. (nat_complete_ind) We take the following as an axiom:
∀p : setprop, (∀n, nat_p n(∀mn, p m)p n)∀n, nat_p np n
L855
Axiom. (nat_p_trans) We take the following as an axiom:
∀n, nat_p n∀mn, nat_p m
L856
Axiom. (nat_trans) We take the following as an axiom:
∀n, nat_p n∀mn, m n
L857
Axiom. (nat_TransSet) We take the following as an axiom:
∀n, nat_p nTransSet n
L858
Axiom. (nat_ordinal) We take the following as an axiom:
∀n, nat_p nordinal n
L859
Axiom. (nat_ordsucc_trans) We take the following as an axiom:
∀n, nat_p n∀mordsucc n, m n
L860
Axiom. (Union_ordsucc_eq) We take the following as an axiom:
∀n, nat_p n (ordsucc n) = n
L861
Axiom. (In_0_3) We take the following as an axiom:
L862
Axiom. (In_1_3) We take the following as an axiom:
L863
Axiom. (In_2_3) We take the following as an axiom:
L864
Axiom. (In_0_4) We take the following as an axiom:
L865
Axiom. (In_1_4) We take the following as an axiom:
L866
Axiom. (In_2_4) We take the following as an axiom:
L867
Axiom. (In_3_4) We take the following as an axiom:
L868
Axiom. (In_0_5) We take the following as an axiom:
L869
Axiom. (In_1_5) We take the following as an axiom:
L870
Axiom. (In_2_5) We take the following as an axiom:
L871
Axiom. (In_3_5) We take the following as an axiom:
L872
Axiom. (In_4_5) We take the following as an axiom:
L873
Axiom. (In_0_6) We take the following as an axiom:
L874
Axiom. (In_1_6) We take the following as an axiom:
L875
Axiom. (In_2_6) We take the following as an axiom:
L876
Axiom. (In_3_6) We take the following as an axiom:
L877
Axiom. (In_4_6) We take the following as an axiom:
L878
Axiom. (In_5_6) We take the following as an axiom:
L879
Axiom. (In_0_7) We take the following as an axiom:
L880
Axiom. (In_1_7) We take the following as an axiom:
L881
Axiom. (In_2_7) We take the following as an axiom:
L882
Axiom. (In_3_7) We take the following as an axiom:
L883
Axiom. (In_4_7) We take the following as an axiom:
L884
Axiom. (In_5_7) We take the following as an axiom:
L885
Axiom. (In_6_7) We take the following as an axiom:
L886
Axiom. (In_0_8) We take the following as an axiom:
L887
Axiom. (In_1_8) We take the following as an axiom:
L888
Axiom. (In_2_8) We take the following as an axiom:
L889
Axiom. (In_3_8) We take the following as an axiom:
L890
Axiom. (In_4_8) We take the following as an axiom:
L891
Axiom. (In_5_8) We take the following as an axiom:
L892
Axiom. (In_6_8) We take the following as an axiom:
L893
Axiom. (In_7_8) We take the following as an axiom:
L894
Axiom. (In_0_9) We take the following as an axiom:
L895
Axiom. (In_1_9) We take the following as an axiom:
L896
Axiom. (In_2_9) We take the following as an axiom:
L897
Axiom. (In_3_9) We take the following as an axiom:
L898
Axiom. (In_4_9) We take the following as an axiom:
L899
Axiom. (In_5_9) We take the following as an axiom:
L900
Axiom. (In_6_9) We take the following as an axiom:
L901
Axiom. (In_7_9) We take the following as an axiom:
L902
Axiom. (In_8_9) We take the following as an axiom:
L903
Axiom. (nIn_0_0) We take the following as an axiom:
L904
Axiom. (nIn_1_0) We take the following as an axiom:
L905
Axiom. (nIn_2_0) We take the following as an axiom:
L906
Axiom. (nIn_1_1) We take the following as an axiom:
L907
Axiom. (nIn_2_1) We take the following as an axiom:
L908
Axiom. (nIn_2_2) We take the following as an axiom:
L909
Axiom. (nSubq_1_0) We take the following as an axiom:
L910
Axiom. (nSubq_2_0) We take the following as an axiom:
L911
Axiom. (nSubq_2_1) We take the following as an axiom:
L912
Axiom. (exandE_ii) We take the following as an axiom:
∀P Q : (setset)prop, (∃x : setset, P x Q x)∀p : prop, (∀x : setset, P xQ xp)p
L914
Axiom. (tab_pos_exactly1of2) We take the following as an axiom:
∀A B : prop, exactly1of2 A B(A¬ BFalse)(¬ ABFalse)False
L915
Axiom. (tab_neg_exactly1of2) We take the following as an axiom:
∀A B : prop, ¬ exactly1of2 A B(ABFalse)(¬ A¬ BFalse)False
L916
Axiom. (tab_pos_exactly1of3) We take the following as an axiom:
∀A B C : prop, exactly1of3 A B C(A¬ B¬ CFalse)(¬ AB¬ CFalse)(¬ A¬ BCFalse)False
L917
Axiom. (tab_neg_exactly1of3) We take the following as an axiom:
∀A B C : prop, ¬ exactly1of3 A B C(¬ A¬ B¬ CFalse)(ABFalse)(ACFalse)(BCFalse)False
L918
Axiom. (Regularity) We take the following as an axiom:
∀X x : set, x X∃Y : set, Y X ¬ ∃z : set, z X z Y
Beginning of Section EpsilonRec
L920
Variable F : set(setset)set
L921
Axiom. (In_rec_G_i_c) We take the following as an axiom:
∀X : set, ∀f : setset, (∀xX, In_rec_G_i F x (f x))In_rec_G_i F X (F X f)
L922
Axiom. (In_rec_G_i_inv) We take the following as an axiom:
∀X : set, ∀Y : set, In_rec_G_i F X Y∃f : setset, (∀xX, In_rec_G_i F x (f x)) Y = F X f
L923
Hypothesis Fr : ∀X : set, ∀g h : setset, (∀xX, g x = h x)F X g = F X h
L924
Axiom. (In_rec_G_i_f) We take the following as an axiom:
∀X : set, ∀Y Z : set, In_rec_G_i F X YIn_rec_G_i F X ZY = Z
L925
Axiom. (In_rec_G_i_In_rec_i) We take the following as an axiom:
∀X : set, In_rec_G_i F X (In_rec_i F X)
L926
Axiom. (In_rec_G_i_In_rec_d) We take the following as an axiom:
∀X : set, In_rec_G_i F X (F X (In_rec_i F))
L927
Axiom. (In_rec_i_eq) We take the following as an axiom:
∀X : set, In_rec_i F X = F X (In_rec_i F)
End of Section EpsilonRec
Notation. Natural numbers 0,1,2,... are notation for the terms formed using as 0 and forming successors with ordsucc.
L930
Axiom. (Inj1_eq) We take the following as an axiom:
∀X : set, Inj1 X = {0} {Inj1 x|xX}
L931
Axiom. (Inj1I1) We take the following as an axiom:
∀X : set, 0 Inj1 X
L932
Axiom. (Inj1I2) We take the following as an axiom:
∀X x : set, x XInj1 x Inj1 X
L933
Axiom. (Inj1E) We take the following as an axiom:
∀X y : set, y Inj1 Xy = 0 ∃xX, y = Inj1 x
L934
Axiom. (Inj1E_impred) We take the following as an axiom:
∀X y : set, y Inj1 X∀p : setprop, p 0(∀xX, p (Inj1 x))p y
L935
Axiom. (Inj1NE1) We take the following as an axiom:
∀x : set, Inj1 x 0
L936
Axiom. (Inj1NE2) We take the following as an axiom:
∀x : set, Inj1 x {0}
L937
Axiom. (Inj0I) We take the following as an axiom:
∀X x : set, x XInj1 x Inj0 X
L938
Axiom. (Inj0E) We take the following as an axiom:
∀X y : set, y Inj0 X∃x : set, x X y = Inj1 x
L939
Axiom. (Inj0E_impred) We take the following as an axiom:
∀X y : set, y Inj0 X∀p : setprop, (∀x, x Xp (Inj1 x))p y
L940
Axiom. (Unj_eq) We take the following as an axiom:
∀X : set, Unj X = {Unj x|xX {0}}
L941
Axiom. (Unj_Inj1_eq) We take the following as an axiom:
∀X : set, Unj (Inj1 X) = X
L942
Axiom. (Inj1_inj) We take the following as an axiom:
∀X Y : set, Inj1 X = Inj1 YX = Y
L943
Axiom. (Unj_Inj0_eq) We take the following as an axiom:
∀X : set, Unj (Inj0 X) = X
L944
Axiom. (Inj0_inj) We take the following as an axiom:
∀X Y : set, Inj0 X = Inj0 YX = Y
L945
Axiom. (Inj0_0) We take the following as an axiom:
L946
Axiom. (Inj0_Inj1_neq) We take the following as an axiom:
∀X Y : set, Inj0 X Inj1 Y
Notation. We use + as an infix operator with priority 450 and which associates to the left corresponding to applying term setsum.
L949
Axiom. (Inj0_setsum) We take the following as an axiom:
∀X Y x : set, x XInj0 x X + Y
L950
Axiom. (Inj1_setsum) We take the following as an axiom:
∀X Y y : set, y YInj1 y X + Y
L951
Axiom. (setsum_Inj_inv) We take the following as an axiom:
∀X Y z : set, z X + Y(∃xX, z = Inj0 x) (∃yY, z = Inj1 y)
L952
Axiom. (setsum_Inj_inv_impred) We take the following as an axiom:
∀X Y z : set, z X + Y∀p : setprop, (∀xX, p (Inj0 x))(∀yY, p (Inj1 y))p z
L953
Axiom. (Inj0_setsum_0L) We take the following as an axiom:
∀X : set, 0 + X = Inj0 X
L954
Axiom. (setsum_mon) We take the following as an axiom:
∀X Y W Z, X WY ZX + Y W + Z
L955
Axiom. (combine_funcs_eq1) We take the following as an axiom:
∀X Y, ∀f g : setset, ∀x, combine_funcs X Y f g (Inj0 x) = f x
L956
Axiom. (combine_funcs_eq2) We take the following as an axiom:
∀X Y, ∀f g : setset, ∀y, combine_funcs X Y f g (Inj1 y) = g y
L957
Axiom. (exandE_iii) We take the following as an axiom:
∀P Q : (setsetset)prop, (∃x : setsetset, P x Q x)∀p : prop, (∀x : setsetset, P xQ xp)p
L959
Axiom. (exandE_iiii) We take the following as an axiom:
∀P Q : (setsetsetset)prop, (∃x : setsetsetset, P x Q x)∀p : prop, (∀x : setsetsetset, P xQ xp)p
L960
Axiom. (exandE_iio) We take the following as an axiom:
∀P Q : (setsetprop)prop, (∃x : setsetprop, P x Q x)∀p : prop, (∀x : setsetprop, P xQ xp)p
L961
Axiom. (exandE_iiio) We take the following as an axiom:
∀P Q : (setsetsetprop)prop, (∃x : setsetsetprop, P x Q x)∀p : prop, (∀x : setsetsetprop, P xQ xp)p
Primitive. The name Descr_ii is a term of type ((setset)prop)(setset).
L964
Axiom. (Descr_ii_prop) We take the following as an axiom:
∀P : (setset)prop, (∃f : setset, P f)(∀f g : setset, P fP gf = g)P (Descr_ii P)
Primitive. The name Descr_iii is a term of type ((setsetset)prop)(setsetset).
L967
Axiom. (Descr_iii_prop) We take the following as an axiom:
∀P : (setsetset)prop, (∃f : setsetset, P f)(∀f g : setsetset, P fP gf = g)P (Descr_iii P)
Primitive. The name Descr_iio is a term of type ((setsetprop)prop)(setsetprop).
L970
Axiom. (Descr_iio_prop) We take the following as an axiom:
∀P : (setsetprop)prop, (∃f : setsetprop, P f)(∀f g : setsetprop, P fP gf = g)P (Descr_iio P)
Primitive. The name Descr_Vo1 is a term of type (Vo 1prop)Vo 1.
L973
Axiom. (Descr_Vo1_prop) We take the following as an axiom:
∀P : Vo 1prop, (∃f : Vo 1, P f)(∀f g : Vo 1, P fP gf = g)P (Descr_Vo1 P)
Primitive. The name Descr_Vo2 is a term of type (Vo 2prop)Vo 2.
L976
Axiom. (Descr_Vo2_prop) We take the following as an axiom:
∀P : Vo 2prop, (∃f : Vo 2, P f)(∀f g : Vo 2, P fP gf = g)P (Descr_Vo2 P)
Primitive. The name Descr_Vo3 is a term of type (Vo 3prop)Vo 3.
L979
Axiom. (Descr_Vo3_prop) We take the following as an axiom:
∀P : Vo 3prop, (∃f : Vo 3, P f)(∀f g : Vo 3, P fP gf = g)P (Descr_Vo3 P)
Primitive. The name Descr_Vo4 is a term of type (Vo 4prop)Vo 4.
L982
Axiom. (Descr_Vo4_prop) We take the following as an axiom:
∀P : Vo 4prop, (∃f : Vo 4, P f)(∀f g : Vo 4, P fP gf = g)P (Descr_Vo4 P)
Primitive. The name If_ii is a term of type prop(setset)(setset)(setset).
L991
Axiom. (If_ii_1) We take the following as an axiom:
∀p : prop, ∀x y : (setset), pIf_ii p x y = x
L992
Axiom. (If_ii_0) We take the following as an axiom:
∀p : prop, ∀x y : (setset), ¬ pIf_ii p x y = y
Primitive. The name If_iii is a term of type prop(setsetset)(setsetset)(setsetset).
L994
Axiom. (If_iii_1) We take the following as an axiom:
∀p : prop, ∀x y : (setsetset), pIf_iii p x y = x
L995
Axiom. (If_iii_0) We take the following as an axiom:
∀p : prop, ∀x y : (setsetset), ¬ pIf_iii p x y = y
Primitive. The name If_iio is a term of type prop(setsetprop)(setsetprop)(setsetprop).
L997
Axiom. (If_iio_1) We take the following as an axiom:
∀p : prop, ∀x y : (setsetprop), pIf_iio p x y = x
L998
Axiom. (If_iio_0) We take the following as an axiom:
∀p : prop, ∀x y : (setsetprop), ¬ pIf_iio p x y = y
Primitive. The name If_Vo1 is a term of type propVo 1Vo 1Vo 1.
L1000
Axiom. (If_Vo1_1) We take the following as an axiom:
∀p : prop, ∀x y : Vo 1, pIf_Vo1 p x y = x
L1001
Axiom. (If_Vo1_0) We take the following as an axiom:
∀p : prop, ∀x y : Vo 1, ¬ pIf_Vo1 p x y = y
Primitive. The name If_Vo2 is a term of type propVo 2Vo 2Vo 2.
L1003
Axiom. (If_Vo2_1) We take the following as an axiom:
∀p : prop, ∀x y : Vo 2, pIf_Vo2 p x y = x
L1004
Axiom. (If_Vo2_0) We take the following as an axiom:
∀p : prop, ∀x y : Vo 2, ¬ pIf_Vo2 p x y = y
Primitive. The name If_Vo3 is a term of type propVo 3Vo 3Vo 3.
L1006
Axiom. (If_Vo3_1) We take the following as an axiom:
∀p : prop, ∀x y : Vo 3, pIf_Vo3 p x y = x
L1007
Axiom. (If_Vo3_0) We take the following as an axiom:
∀p : prop, ∀x y : Vo 3, ¬ pIf_Vo3 p x y = y
Primitive. The name If_Vo4 is a term of type propVo 4Vo 4Vo 4.
L1009
Axiom. (If_Vo4_1) We take the following as an axiom:
∀p : prop, ∀x y : Vo 4, pIf_Vo4 p x y = x
L1010
Axiom. (If_Vo4_0) We take the following as an axiom:
∀p : prop, ∀x y : Vo 4, ¬ pIf_Vo4 p x y = y
Primitive. The name In_rec_ii is a term of type (set(set(setset))(setset))set(setset).
L1019
Axiom. (In_rec_ii_eq) We take the following as an axiom:
∀F : set(set(setset))(setset), (∀X : set, ∀g h : set(setset), (∀xX, g x = h x)F X g = F X h)∀X : set, In_rec_ii F X = F X (In_rec_ii F)
Primitive. The name In_rec_iii is a term of type (set(set(setsetset))(setsetset))set(setsetset).
L1021
Axiom. (In_rec_iii_eq) We take the following as an axiom:
∀F : set(set(setsetset))(setsetset), (∀X : set, ∀g h : set(setsetset), (∀xX, g x = h x)F X g = F X h)∀X : set, In_rec_iii F X = F X (In_rec_iii F)
Primitive. The name In_rec_iio is a term of type (set(set(setsetprop))(setsetprop))set(setsetprop).
L1023
Axiom. (In_rec_iio_eq) We take the following as an axiom:
∀F : set(set(setsetprop))(setsetprop), (∀X : set, ∀g h : set(setsetprop), (∀xX, g x = h x)F X g = F X h)∀X : set, In_rec_iio F X = F X (In_rec_iio F)
Primitive. The name In_rec_Vo1 is a term of type (set(setVo 1)Vo 1)setVo 1.
L1025
Axiom. (In_rec_Vo1_eq) We take the following as an axiom:
∀F : set(setVo 1)Vo 1, (∀X : set, ∀g h : setVo 1, (∀xX, g x = h x)F X g = F X h)∀X : set, In_rec_Vo1 F X = F X (In_rec_Vo1 F)
Primitive. The name In_rec_Vo2 is a term of type (set(setVo 2)Vo 2)setVo 2.
L1027
Axiom. (In_rec_Vo2_eq) We take the following as an axiom:
∀F : set(setVo 2)Vo 2, (∀X : set, ∀g h : setVo 2, (∀xX, g x = h x)F X g = F X h)∀X : set, In_rec_Vo2 F X = F X (In_rec_Vo2 F)
Primitive. The name In_rec_Vo3 is a term of type (set(setVo 3)Vo 3)setVo 3.
L1029
Axiom. (In_rec_Vo3_eq) We take the following as an axiom:
∀F : set(setVo 3)Vo 3, (∀X : set, ∀g h : setVo 3, (∀xX, g x = h x)F X g = F X h)∀X : set, In_rec_Vo3 F X = F X (In_rec_Vo3 F)
Primitive. The name In_rec_Vo4 is a term of type (set(setVo 4)Vo 4)setVo 4.
L1031
Axiom. (In_rec_Vo4_eq) We take the following as an axiom:
∀F : set(setVo 4)Vo 4, (∀X : set, ∀g h : setVo 4, (∀xX, g x = h x)F X g = F X h)∀X : set, In_rec_Vo4 F X = F X (In_rec_Vo4 F)
L1032
Definition. We define incl_0_1 to be λx ⇒ λy ⇒ y x of type Vo 0Vo 1.
L1033
Definition. We define In_1 to be λX Y ⇒ ∃x : Vo 0, X = incl_0_1 x Y x of type Vo 1Vo 1prop.
L1034
Definition. We define incl_1_2 to be λX ⇒ λY ⇒ In_1 Y X of type Vo 1Vo 2.
L1035
Definition. We define In_2 to be λX Y ⇒ ∃x : Vo 1, X = incl_1_2 x Y x of type Vo 2Vo 2prop.
L1036
Definition. We define incl_2_3 to be λX ⇒ λY ⇒ In_2 Y X of type Vo 2Vo 3.
L1037
Definition. We define In_3 to be λX Y ⇒ ∃x : Vo 2, X = incl_2_3 x Y x of type Vo 3Vo 3prop.
L1038
Definition. We define incl_3_4 to be λX ⇒ λY ⇒ In_3 Y X of type Vo 3Vo 4.
L1039
Definition. We define In_4 to be λX Y ⇒ ∃x : Vo 3, X = incl_3_4 x Y x of type Vo 4Vo 4prop.
L1040
Axiom. (In_1_I) We take the following as an axiom:
∀x, ∀Y : Vo 1, Y xIn_1 (incl_0_1 x) Y
L1041
Axiom. (In_1_E) We take the following as an axiom:
∀X Y : Vo 1, In_1 X Y∀p : Vo 1prop, (∀x, Y xp (incl_0_1 x))p X
L1042
Axiom. (incl_0_1_inj) We take the following as an axiom:
∀x y, incl_0_1 x = incl_0_1 yx = y
L1043
Axiom. (In_1_up) We take the following as an axiom:
∀x y, x yIn_1 (incl_0_1 x) (incl_0_1 y)
L1044
Axiom. (In_1_down) We take the following as an axiom:
∀x y, In_1 (incl_0_1 x) (incl_0_1 y)x y
L1045
Axiom. (In_2_I) We take the following as an axiom:
∀x : Vo 1, ∀Y : Vo 2, Y xIn_2 (incl_1_2 x) Y
L1046
Axiom. (In_2_E) We take the following as an axiom:
∀X Y : Vo 2, In_2 X Y∀p : Vo 2prop, (∀x : Vo 1, Y xp (incl_1_2 x))p X
L1047
Axiom. (incl_1_2_inj) We take the following as an axiom:
∀x y : Vo 1, incl_1_2 x = incl_1_2 yx = y
L1048
Axiom. (In_2_up) We take the following as an axiom:
∀x y : Vo 1, In_1 x yIn_2 (incl_1_2 x) (incl_1_2 y)
L1049
Axiom. (In_2_down) We take the following as an axiom:
∀x y : Vo 1, In_2 (incl_1_2 x) (incl_1_2 y)In_1 x y
L1050
Axiom. (In_3_I) We take the following as an axiom:
∀x : Vo 2, ∀Y : Vo 3, Y xIn_3 (incl_2_3 x) Y
L1051
Axiom. (In_3_E) We take the following as an axiom:
∀X Y : Vo 3, In_3 X Y∀p : Vo 3prop, (∀x : Vo 2, Y xp (incl_2_3 x))p X
L1052
Axiom. (incl_2_3_inj) We take the following as an axiom:
∀x y : Vo 2, incl_2_3 x = incl_2_3 yx = y
L1053
Axiom. (In_3_up) We take the following as an axiom:
∀x y : Vo 2, In_2 x yIn_3 (incl_2_3 x) (incl_2_3 y)
L1054
Axiom. (In_3_down) We take the following as an axiom:
∀x y : Vo 2, In_3 (incl_2_3 x) (incl_2_3 y)In_2 x y
L1055
Axiom. (In_4_I) We take the following as an axiom:
∀x : Vo 3, ∀Y : Vo 4, Y xIn_4 (incl_3_4 x) Y
L1056
Axiom. (In_4_E) We take the following as an axiom:
∀X Y : Vo 4, In_4 X Y∀p : Vo 4prop, (∀x : Vo 3, Y xp (incl_3_4 x))p X
L1057
Axiom. (incl_3_4_inj) We take the following as an axiom:
∀x y : Vo 3, incl_3_4 x = incl_3_4 yx = y
L1058
Axiom. (In_4_up) We take the following as an axiom:
∀x y : Vo 3, In_3 x yIn_4 (incl_3_4 x) (incl_3_4 y)
L1059
Axiom. (In_4_down) We take the following as an axiom:
∀x y : Vo 3, In_4 (incl_3_4 x) (incl_3_4 y)In_3 x y
L1060
Axiom. (PowerI2) We take the following as an axiom:
∀X Y, (∀yY, y X)Y 𝒫 X
L1062
Axiom. (PowerE2) We take the following as an axiom:
∀X Y, Y 𝒫 X∀yY, y X
L1063
Axiom. (Inj1_setsum_1L) We take the following as an axiom:
∀X : set, 1 + X = Inj1 X
L1064
Axiom. (nat_setsum1_ordsucc) We take the following as an axiom:
∀n : set, nat_p n1 + n = ordsucc n
L1065
Axiom. (setsum_0_0) We take the following as an axiom:
0 + 0 = 0
L1066
Axiom. (setsum_1_0_1) We take the following as an axiom:
1 + 0 = 1
L1067
Axiom. (setsum_1_1_2) We take the following as an axiom:
1 + 1 = 2
L1068
Let pair : setsetsetsetsum
L1069
Axiom. (pair_0_0) We take the following as an axiom:
pair 0 0 = 0
L1070
Axiom. (pair_1_0_1) We take the following as an axiom:
pair 1 0 = 1
L1071
Axiom. (pair_1_1_2) We take the following as an axiom:
pair 1 1 = 2
L1072
Axiom. (nat_pair1_ordsucc) We take the following as an axiom:
∀n : set, nat_p npair 1 n = ordsucc n
L1073
Axiom. (Inj0_pair_0_eq) We take the following as an axiom:
Inj0 = pair 0
L1074
Axiom. (Inj1_pair_1_eq) We take the following as an axiom:
Inj1 = pair 1
L1075
Axiom. (pairI0) We take the following as an axiom:
∀X Y x, x Xpair 0 x pair X Y
L1076
Axiom. (pairI1) We take the following as an axiom:
∀X Y y, y Ypair 1 y pair X Y
L1077
Axiom. (pairE) We take the following as an axiom:
∀X Y z, z pair X Y(∃xX, z = pair 0 x) (∃yY, z = pair 1 y)
L1078
Axiom. (pairE_impred) We take the following as an axiom:
∀X Y z, z pair X Y∀p : setprop, (∀xX, p (pair 0 x))(∀yY, p (pair 1 y))p z
L1079
Axiom. (pairE0) We take the following as an axiom:
∀X Y x, pair 0 x pair X Yx X
L1080
Axiom. (pairE1) We take the following as an axiom:
∀X Y y, pair 1 y pair X Yy Y
L1081
Axiom. (pairEq) We take the following as an axiom:
∀X Y z, z pair X Y (∃xX, z = pair 0 x) (∃yY, z = pair 1 y)
L1082
Axiom. (pairSubq) We take the following as an axiom:
∀X Y W Z, X WY Zpair X Y pair W Z
L1083
Axiom. (proj0I) We take the following as an axiom:
∀w u : set, pair 0 u wu proj0 w
L1084
Axiom. (proj0E) We take the following as an axiom:
∀w u : set, u proj0 wpair 0 u w
L1085
Axiom. (proj1I) We take the following as an axiom:
∀w u : set, pair 1 u wu proj1 w
L1086
Axiom. (proj1E) We take the following as an axiom:
∀w u : set, u proj1 wpair 1 u w
L1087
Axiom. (proj0_pair_eq) We take the following as an axiom:
∀X Y : set, proj0 (pair X Y) = X
L1088
Axiom. (proj1_pair_eq) We take the following as an axiom:
∀X Y : set, proj1 (pair X Y) = Y
L1089
Axiom. (pair_inj) We take the following as an axiom:
∀x y w z : set, pair x y = pair w zx = w y = z
L1090
Axiom. (pair_eta_Subq_proj) We take the following as an axiom:
∀w, pair (proj0 w) (proj1 w) w
L1091
Let Sigma : set(setset)setlam
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Sigma.
L1095
Axiom. (pair_Sigma) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀xX, ∀yY x, pair x y xX, Y x
L1096
Axiom. (Sigma_eta_proj0_proj1) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z(xX, Y x), pair (proj0 z) (proj1 z) = z proj0 z X proj1 z Y (proj0 z)
L1097
Axiom. (proj_Sigma_eta) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z(xX, Y x), pair (proj0 z) (proj1 z) = z
L1098
Axiom. (proj0_Sigma) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)proj0 z X
L1099
Axiom. (proj1_Sigma) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)proj1 z Y (proj0 z)
L1100
Axiom. (pair_Sigma_E0) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀x y : set, pair x y (xX, Y x)x X
L1101
Axiom. (pair_Sigma_E1) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀x y : set, pair x y (xX, Y x)y Y x
L1102
Axiom. (Sigma_E) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)∃xX, ∃yY x, z = pair x y
L1103
Axiom. (Sigma_Eq) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x) ∃xX, ∃yY x, z = pair x y
L1104
Axiom. (Sigma_mon) We take the following as an axiom:
∀X Y : set, X Y∀Z W : setset, (∀xX, Z x W x)(xX, Z x) yY, W y
L1105
Axiom. (Sigma_mon0) We take the following as an axiom:
∀X Y : set, X Y∀Z : setset, (xX, Z x) yY, Z y
L1106
Axiom. (Sigma_mon1) We take the following as an axiom:
∀X : set, ∀Z W : setset, (∀x, x XZ x W x)(xX, Z x) xX, W x
L1107
Axiom. (Sigma_Power_1) We take the following as an axiom:
∀X : set, X 𝒫 1∀Y : setset, (∀xX, Y x 𝒫 1)(xX, Y x) 𝒫 1
Notation. We use as an infix operator with priority 440 and which associates to the left corresponding to applying term setprod.
L1110
Axiom. (pair_setprod) We take the following as an axiom:
∀X Y : set, ∀(xX)(yY), pair x y X Y
L1111
Axiom. (proj0_setprod) We take the following as an axiom:
∀X Y : set, ∀zX Y, proj0 z X
L1112
Axiom. (proj1_setprod) We take the following as an axiom:
∀X Y : set, ∀zX Y, proj1 z Y
L1113
Axiom. (setprod_mon) We take the following as an axiom:
∀X Y : set, X Y∀Z W : set, Z WX Z Y W
L1114
Axiom. (setprod_mon0) We take the following as an axiom:
∀X Y : set, X Y∀Z : set, X Z Y Z
L1115
Axiom. (setprod_mon1) We take the following as an axiom:
∀X : set, ∀Z W : set, Z WX Z X W
L1116
Axiom. (pair_setprod_E0) We take the following as an axiom:
∀X Y x y : set, pair x y X Yx X
L1117
Axiom. (pair_setprod_E1) We take the following as an axiom:
∀X Y x y : set, pair x y X Yy Y
Notation. When x is a set, a term x y is notation for ap x y.
Notation. λ xAB is notation for the set lam Ax : set ⇒ B).
Notation. We now use n-tuple notation (a0,...,an-1) for n ≥ 2 for λ i ∈ n . if i = 0 then a0 else ... if i = n-2 then an-2 else an-1.
L1120
Axiom. (lamI) We take the following as an axiom:
∀X : set, ∀F : setset, ∀xX, ∀yF x, pair x y λxXF x
L1121
Axiom. (lamE) We take the following as an axiom:
∀X : set, ∀F : setset, ∀z : set, z (λxXF x)∃xX, ∃yF x, z = pair x y
L1122
Axiom. (lamEq) We take the following as an axiom:
∀X : set, ∀F : setset, ∀z, z (λxXF x) ∃xX, ∃yF x, z = pair x y
L1123
Axiom. (apI) We take the following as an axiom:
∀f x y, pair x y fy f x
L1124
Axiom. (apE) We take the following as an axiom:
∀f x y, y f xpair x y f
L1125
Axiom. (apEq) We take the following as an axiom:
∀f x y, y f x pair x y f
L1126
Axiom. (beta) We take the following as an axiom:
∀X : set, ∀F : setset, ∀x : set, x X(λxXF x) x = F x
L1127
Axiom. (beta0) We take the following as an axiom:
∀X : set, ∀F : setset, ∀x : set, x X(λxXF x) x = 0
L1128
Axiom. (neq_3_0) We take the following as an axiom:
L1130
Axiom. (neq_3_1) We take the following as an axiom:
L1131
Axiom. (neq_3_2) We take the following as an axiom:
L1132
Axiom. (neq_4_0) We take the following as an axiom:
L1133
Axiom. (neq_4_1) We take the following as an axiom:
L1134
Axiom. (neq_4_2) We take the following as an axiom:
L1135
Axiom. (neq_4_3) We take the following as an axiom:
L1136
Axiom. (neq_5_0) We take the following as an axiom:
L1137
Axiom. (neq_5_1) We take the following as an axiom:
L1138
Axiom. (neq_5_2) We take the following as an axiom:
L1139
Axiom. (neq_5_3) We take the following as an axiom:
L1140
Axiom. (neq_5_4) We take the following as an axiom:
L1141
Axiom. (neq_6_0) We take the following as an axiom:
L1142
Axiom. (neq_6_1) We take the following as an axiom:
L1143
Axiom. (neq_6_2) We take the following as an axiom:
L1144
Axiom. (neq_6_3) We take the following as an axiom:
L1145
Axiom. (neq_6_4) We take the following as an axiom:
L1146
Axiom. (neq_6_5) We take the following as an axiom:
L1147
Axiom. (neq_7_0) We take the following as an axiom:
L1148
Axiom. (neq_7_1) We take the following as an axiom:
L1149
Axiom. (neq_7_2) We take the following as an axiom:
L1150
Axiom. (neq_7_3) We take the following as an axiom:
L1151
Axiom. (neq_7_4) We take the following as an axiom:
L1152
Axiom. (neq_7_5) We take the following as an axiom:
L1153
Axiom. (neq_7_6) We take the following as an axiom:
L1154
Axiom. (neq_8_0) We take the following as an axiom:
L1155
Axiom. (neq_8_1) We take the following as an axiom:
L1156
Axiom. (neq_8_2) We take the following as an axiom:
L1157
Axiom. (neq_8_3) We take the following as an axiom:
L1158
Axiom. (neq_8_4) We take the following as an axiom:
L1159
Axiom. (neq_8_5) We take the following as an axiom:
L1160
Axiom. (neq_8_6) We take the following as an axiom:
L1161
Axiom. (neq_8_7) We take the following as an axiom:
L1162
Axiom. (neq_9_0) We take the following as an axiom:
L1163
Axiom. (neq_9_1) We take the following as an axiom:
L1164
Axiom. (neq_9_2) We take the following as an axiom:
L1165
Axiom. (neq_9_3) We take the following as an axiom:
L1166
Axiom. (neq_9_4) We take the following as an axiom:
L1167
Axiom. (neq_9_5) We take the following as an axiom:
L1168
Axiom. (neq_9_6) We take the following as an axiom:
L1169
Axiom. (neq_9_7) We take the following as an axiom:
L1170
Axiom. (neq_9_8) We take the following as an axiom:
L1171
Axiom. (TransSetIb) We take the following as an axiom:
∀X, (∀xX, ∀yx, y X)TransSet X
L1172
Axiom. (TransSetEb) We take the following as an axiom:
∀X, TransSet X∀xX, ∀yx, y X
L1173
Axiom. (ordinal_TransSet) We take the following as an axiom:
∀alpha, ordinal alphaTransSet alpha
L1174
Axiom. (ordinal_TransSet_b) We take the following as an axiom:
∀alpha, ordinal alpha∀betaalpha, ∀gammabeta, gamma alpha
L1175
Axiom. (ordinal_In_TransSet) We take the following as an axiom:
∀alpha : set, ordinal alpha∀betaalpha, TransSet beta
L1176
Axiom. (ordinal_In_TransSet_b) We take the following as an axiom:
∀alpha : set, ordinal alpha∀betaalpha, ∀gammabeta, ∀deltagamma, delta beta
L1177
Axiom. (ordinal_Empty) We take the following as an axiom:
L1178
Axiom. (ordinal_Hered) We take the following as an axiom:
∀alpha : set, ordinal alpha∀betaalpha, ordinal beta
L1179
Axiom. (ordinal_ind) We take the following as an axiom:
∀p : setprop, (∀alpha, ordinal alpha(∀betaalpha, p beta)p alpha)∀alpha, ordinal alphap alpha
L1183
Axiom. (least_ordinal_ex) We take the following as an axiom:
∀p : setprop, (∃alpha, ordinal alpha p alpha)∃alpha, ordinal alpha p alpha ∀betaalpha, ¬ p beta
L1184
Axiom. (TransSet_ordsucc) We take the following as an axiom:
∀X : set, TransSet XTransSet (ordsucc X)
L1185
Axiom. (ordinal_ordsucc) We take the following as an axiom:
∀alpha : set, ordinal alphaordinal (ordsucc alpha)
L1186
Axiom. (nat_p_ordinal) We take the following as an axiom:
∀n : set, nat_p nordinal n
L1187
Axiom. (ordinal_1) We take the following as an axiom:
L1188
Axiom. (ordinal_2) We take the following as an axiom:
L1189
Axiom. (TransSet_ordsucc_In_Subq) We take the following as an axiom:
∀X : set, TransSet X∀xX, ordsucc x X
L1190
Axiom. (ordinal_ordsucc_In_Subq) We take the following as an axiom:
∀alpha, ordinal alpha∀betaalpha, ordsucc beta alpha
L1191
Axiom. (ordinal_trichotomy_or) We take the following as an axiom:
∀alpha beta : set, ordinal alphaordinal betaalpha beta alpha = beta beta alpha
L1192
Axiom. (ordinal_trichotomy_or_impred) We take the following as an axiom:
∀alpha beta : set, ordinal alphaordinal beta∀p : prop, (alpha betap)(alpha = betap)(beta alphap)p
L1193
Axiom. (exactly1of2_I1) We take the following as an axiom:
∀A B : prop, A¬ Bexactly1of2 A B
L1194
Axiom. (exactly1of2_I2) We take the following as an axiom:
∀A B : prop, ¬ ABexactly1of2 A B
L1195
Axiom. (exactly1of3_I1) We take the following as an axiom:
∀A B C : prop, A¬ B¬ Cexactly1of3 A B C
L1196
Axiom. (exactly1of3_I2) We take the following as an axiom:
∀A B C : prop, ¬ AB¬ Cexactly1of3 A B C
L1197
Axiom. (exactly1of3_I3) We take the following as an axiom:
∀A B C : prop, ¬ A¬ BCexactly1of3 A B C
L1198
Axiom. (ordinal_trichotomy) We take the following as an axiom:
∀alpha beta : set, ordinal alphaordinal betaexactly1of3 (alpha beta) (alpha = beta) (beta alpha)
L1200
Axiom. (ordinal_In_Or_Subq) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal betaalpha beta beta alpha
L1201
Axiom. (ordinal_linear) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal betaalpha beta beta alpha
L1202
Axiom. (ordinal_ordsucc_In_eq) We take the following as an axiom:
∀alpha beta, ordinal alphabeta alphaordsucc beta alpha alpha = ordsucc beta
L1203
Axiom. (ordinal_lim_or_succ) We take the following as an axiom:
∀alpha, ordinal alpha(∀betaalpha, ordsucc beta alpha) (∃betaalpha, alpha = ordsucc beta)
L1204
Axiom. (ordinal_ordsucc_In) We take the following as an axiom:
∀alpha, ordinal alpha∀betaalpha, ordsucc beta ordsucc alpha
L1205
Axiom. (ordinal_Union) We take the following as an axiom:
∀X, (∀xX, ordinal x)ordinal ( X)
L1206
Axiom. (ordinal_famunion) We take the following as an axiom:
∀X, ∀F : setset, (∀xX, ordinal (F x))ordinal (xXF x)
L1207
Axiom. (ordinal_binintersect) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal betaordinal (alpha beta)
L1208
Axiom. (ordinal_binunion) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal betaordinal (alpha beta)
L1209
Axiom. (ordinal_Sep) We take the following as an axiom:
∀alpha, ordinal alpha∀p : setprop, (∀betaalpha, ∀gammabeta, p betap gamma)ordinal {betaalpha|p beta}
L1210
Definition. We define down_1_0 to be λX ⇒ Eps_i (λx ⇒ incl_0_1 x = X) of type Vo 1Vo 0.
L1212
Definition. We define down_2_1 to be λX ⇒ Descr_Vo1 (λx ⇒ incl_1_2 x = X) of type Vo 2Vo 1.
L1213
Definition. We define down_3_2 to be λX ⇒ Descr_Vo2 (λx ⇒ incl_2_3 x = X) of type Vo 3Vo 2.
L1214
Definition. We define down_4_3 to be λX ⇒ Descr_Vo3 (λx ⇒ incl_3_4 x = X) of type Vo 4Vo 3.
L1215
Definition. We define AC_1 to be ∃C : (Vo 1prop)Vo 1, ∀P : Vo 1prop, ∀x : Vo 1, P xP (C P) of type prop.
L1217
Definition. We define AC_2 to be ∃C : (Vo 2prop)Vo 2, ∀P : Vo 2prop, ∀x : Vo 2, P xP (C P) of type prop.
L1218
Definition. We define AC_3 to be ∃C : (Vo 3prop)Vo 3, ∀P : Vo 3prop, ∀x : Vo 3, P xP (C P) of type prop.
L1219
Axiom. (down_1_0_incl_0_1) We take the following as an axiom:
∀x, down_1_0 (incl_0_1 x) = x
L1221
Axiom. (down_2_1_incl_1_2) We take the following as an axiom:
∀x : Vo 1, down_2_1 (incl_1_2 x) = x
L1222
Axiom. (down_3_2_incl_2_3) We take the following as an axiom:
∀x : Vo 2, down_3_2 (incl_2_3 x) = x
L1223
Axiom. (down_4_3_incl_3_4) We take the following as an axiom:
∀x : Vo 3, down_4_3 (incl_3_4 x) = x
L1224
Axiom. (AC_3_imp_AC_2) We take the following as an axiom:
L1225
Axiom. (AC_2_imp_AC_1) We take the following as an axiom:
L1226
Axiom. (Skolem_0) We take the following as an axiom:
∀r : setsetprop, (∀x, ∃y, r x y)∃f : setset, ∀x, r x (f x)
L1227
Axiom. (Skolem_0_bdd) We take the following as an axiom:
∀X : set, ∀r : setsetprop, (∀xX, ∃y, r x y)∃f : setset, ∀xX, r x (f x)
L1228
Axiom. (Skolem_1) We take the following as an axiom:
AC_1∀r : Vo 1Vo 1prop, (∀x : Vo 1, ∃y : Vo 1, r x y)∃f : Vo 1Vo 1, ∀x : Vo 1, r x (f x)
L1229
Axiom. (Skolem_1_bdd) We take the following as an axiom:
AC_1∀X : Vo 1, ∀r : Vo 1Vo 1prop, (∀x : Vo 1, In_1 x X∃y : Vo 1, r x y)∃f : Vo 1Vo 1, ∀x : Vo 1, In_1 x Xr x (f x)
L1230
Axiom. (Skolem_2) We take the following as an axiom:
AC_2∀r : Vo 2Vo 2prop, (∀x : Vo 2, ∃y : Vo 2, r x y)∃f : Vo 2Vo 2, ∀x : Vo 2, r x (f x)
L1231
Axiom. (Skolem_2_bdd) We take the following as an axiom:
AC_2∀X : Vo 2, ∀r : Vo 2Vo 2prop, (∀x : Vo 2, In_2 x X∃y : Vo 2, r x y)∃f : Vo 2Vo 2, ∀x : Vo 2, In_2 x Xr x (f x)
L1232
Axiom. (Skolem_3) We take the following as an axiom:
AC_3∀r : Vo 3Vo 3prop, (∀x : Vo 3, ∃y : Vo 3, r x y)∃f : Vo 3Vo 3, ∀x : Vo 3, r x (f x)
L1233
Axiom. (Skolem_3_bdd) We take the following as an axiom:
AC_3∀X : Vo 3, ∀r : Vo 3Vo 3prop, (∀x : Vo 3, In_3 x X∃y : Vo 3, r x y)∃f : Vo 3Vo 3, ∀x : Vo 3, In_3 x Xr x (f x)
L1234
Axiom. (proj0_ap_0) We take the following as an axiom:
∀u, proj0 u = u 0
L1236
Axiom. (proj1_ap_1) We take the following as an axiom:
∀u, proj1 u = u 1
L1237
Axiom. (pair_ap_0) We take the following as an axiom:
∀x y : set, (pair x y) 0 = x
L1238
Axiom. (pair_ap_1) We take the following as an axiom:
∀x y : set, (pair x y) 1 = y
L1239
Axiom. (pair_ap_n2) We take the following as an axiom:
∀x y i : set, i 2(pair x y) i = 0
L1240
Axiom. (pair_eta_Subq) We take the following as an axiom:
∀w, pair (w 0) (w 1) w
L1241
Axiom. (ap0_Sigma) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)(z 0) X
L1242
Axiom. (ap1_Sigma) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z : set, z (xX, Y x)(z 1) (Y (z 0))
L1243
Axiom. (Sigma_eta) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z(xX, Y x), pair (z 0) (z 1) = z
L1244
Axiom. (ReplEq_setprod_ext) We take the following as an axiom:
∀X Y, ∀F G : setsetset, (∀xX, ∀yY, F x y = G x y){F (w 0) (w 1)|wX Y} = {G (w 0) (w 1)|wX Y}
L1245
Axiom. (setsum_p_E) We take the following as an axiom:
∀u, setsum_p u∀p : setprop, (∀x y, p (setsum x y))p u
L1246
Axiom. (setsum_p_I) We take the following as an axiom:
∀x y, setsum_p (setsum x y)
L1247
Axiom. (setsum_p_I2) We take the following as an axiom:
∀w, (∀uw, setsum_p u u 0 2)setsum_p w
L1248
Axiom. (setsum_p_In_ap) We take the following as an axiom:
∀w f, setsum_p ww fw 1 ap f (w 0)
L1249
Axiom. (pred_ext_i) We take the following as an axiom:
∀p q : setprop, (∀x, p xq x)(∀x, q xp x)p = q
L1250
Axiom. (setsum_p_tuple2) We take the following as an axiom:
L1251
Axiom. (tuple_p_2_tuple) We take the following as an axiom:
∀x y : set, tuple_p 2 (x,y)
L1252
Axiom. (tuple_p_3_tuple) We take the following as an axiom:
∀x y z : set, tuple_p 3 (x,y,z)
L1253
Axiom. (tuple_p_4_tuple) We take the following as an axiom:
∀x y z w : set, tuple_p 4 (x,y,z,w)
L1254
Axiom. (tuple_pair) We take the following as an axiom:
∀x y : set, pair x y = (x,y)
Notation. We use x...y [possibly with ascriptions] , B as a binder notation corresponding to a term constructed using Pi.
L1257
Axiom. (PiI) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f : set, (∀uf, setsum_p u u 0 X)(∀xX, f x Y x)f xX, Y x
L1259
Axiom. (PiE_impred) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f : set, f (xX, Y x)∀p : prop, ((∀uf, setsum_p u u 0 X)(∀xX, f x Y x)p)p
L1261
Axiom. (PiE) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f : set, f (xX, Y x)(∀uf, setsum_p u u 0 X) (∀xX, f x Y x)
L1263
Axiom. (PiEq) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f : set, f Pi X Y (∀uf, setsum_p u u 0 X) (∀xX, f x Y x)
L1265
Axiom. (lam_Pi) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀F : setset, (∀xX, F x Y x)(λxXF x) (xX, Y x)
L1267
Axiom. (ap_Pi) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f : set, ∀x : set, f (xX, Y x)x Xf x Y x
L1268
Axiom. (Pi_ext_Subq) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f g(xX, Y x), (∀xX, f x g x)f g
L1269
Axiom. (Pi_ext) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f g(xX, Y x), (∀xX, f x = g x)f = g
L1270
Axiom. (Pi_eta) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀f : set, f (xX, Y x)(λxXf x) = f
L1271
Axiom. (Pi_Power_1) We take the following as an axiom:
∀X : set, ∀Y : setset, (∀xX, Y x 𝒫 1)(xX, Y x) 𝒫 1
L1272
Axiom. (Pi_0_dom_mon) We take the following as an axiom:
∀X Y : set, ∀A : setset, X Y(∀yY, y X0 A y)(xX, A x) yY, A y
L1274
Axiom. (Pi_cod_mon) We take the following as an axiom:
∀X : set, ∀A B : setset, (∀xX, A x B x)(xX, A x) xX, B x
L1275
Axiom. (Pi_0_mon) We take the following as an axiom:
∀X Y : set, ∀A B : setset, (∀xX, A x B x)X Y(∀yY, y X0 B y)(xX, A x) yY, B y
Notation. We use :^: as an infix operator with priority 430 and which associates to the left corresponding to applying term setexp.
L1280
Axiom. (setexp_2_eq) We take the following as an axiom:
∀X : set, X X = X2
L1281
Axiom. (setexp_0_dom_mon) We take the following as an axiom:
∀A : set, 0 A∀X Y : set, X YAX AY
L1282
Axiom. (setexp_0_mon) We take the following as an axiom:
∀X Y A B : set, 0 BA BX YAX BY
L1283
Axiom. (nat_in_setexp_mon) We take the following as an axiom:
∀A : set, 0 A∀n, nat_p n∀mn, Am An
Beginning of Section Tuples
L1285
Variable x0 x1 : set
L1286
Axiom. (tuple_2_0_eq) We take the following as an axiom:
(x0,x1) 0 = x0
L1287
Axiom. (tuple_2_1_eq) We take the following as an axiom:
(x0,x1) 1 = x1
L1288
Variable x2 : set
L1289
Axiom. (tuple_3_0_eq) We take the following as an axiom:
(x0,x1,x2) 0 = x0
L1290
Axiom. (tuple_3_1_eq) We take the following as an axiom:
(x0,x1,x2) 1 = x1
L1291
Axiom. (tuple_3_2_eq) We take the following as an axiom:
(x0,x1,x2) 2 = x2
End of Section Tuples
L1293
Axiom. (pair_tuple_fun) We take the following as an axiom:
pair = (λx y ⇒ (x,y))
L1294
Axiom. (tupleI0) We take the following as an axiom:
∀X Y x, x X(0,x) (X,Y)
L1295
Axiom. (tupleI1) We take the following as an axiom:
∀X Y y, y Y(1,y) (X,Y)
L1296
Axiom. (tupleE) We take the following as an axiom:
∀X Y z, z (X,Y)(∃xX, z = (0,x)) (∃yY, z = (1,y))
L1297
Axiom. (tuple_2_inj) We take the following as an axiom:
∀x y w z : set, (x,y) = (w,z)x = w y = z
L1298
Axiom. (tuple_2_inj_impred) We take the following as an axiom:
∀x y w z : set, (x,y) = (w,z)∀p : prop, (x = wy = zp)p
L1299
Axiom. (tuple_2_Sigma) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀xX, ∀yY x, (x,y) xX, Y x
L1300
Axiom. (tuple_2_setprod) We take the following as an axiom:
∀X : set, ∀Y : set, ∀xX, ∀yY, (x,y) X Y
L1301
Axiom. (tuple_Sigma_eta) We take the following as an axiom:
∀X : set, ∀Y : setset, ∀z(xX, Y x), (z 0,z 1) = z
L1302
Axiom. (lamI2) We take the following as an axiom:
∀X, ∀F : setset, ∀xX, ∀yF x, (x,y) λxXF x
L1303
Axiom. (lamE2) We take the following as an axiom:
∀X, ∀F : setset, ∀z : set, z (λxXF x)∃xX, ∃yF x, z = (x,y)
L1304
Axiom. (lamE_impred) We take the following as an axiom:
∀X, ∀F : setset, ∀z : set, z (λxXF x)∀p : setprop, (∀xX, ∀yF x, p (pair x y))p z
L1305
Axiom. (lamE2_impred) We take the following as an axiom:
∀X, ∀F : setset, ∀z : set, z (λxXF x)∀p : setprop, (∀xX, ∀yF x, p (x,y))p z
L1306
Axiom. (apI2) We take the following as an axiom:
∀f x y, (x,y) fy f x
L1307
Axiom. (apE2) We take the following as an axiom:
∀f x y, y f x(x,y) f
L1308
Axiom. (ap_const_0) We take the following as an axiom:
∀x, 0 x = 0
L1309
Axiom. (lam_ext_sub) We take the following as an axiom:
∀X, ∀F G : setset, (∀xX, F x = G x)(λxXF x) (λxXG x)
L1310
Axiom. (lam_ext) We take the following as an axiom:
∀X, ∀F G : setset, (∀xX, F x = G x)(λxXF x) = (λxXG x)
L1311
Axiom. (lam_eta) We take the following as an axiom:
∀X, ∀F : setset, (λxX(λxXF x) x) = (λxXF x)
L1312
Axiom. (tuple_2_eta) We take the following as an axiom:
∀x y, (λi2(x,y) i) = (x,y)
L1313
Axiom. (tuple_3_eta) We take the following as an axiom:
∀x y z, (λi3(x,y,z) i) = (x,y,z)
L1314
Axiom. (tuple_4_eta) We take the following as an axiom:
∀x y z w, (λi4(x,y,z,w) i) = (x,y,z,w)
L1315
Axiom. (Sep2I) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, ∀xX, ∀yY x, R x y(x,y) Sep2 X Y R
L1317
Axiom. (Sep2E_impred) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, ∀uSep2 X Y R, ∀p : setprop, (∀xX, ∀yY x, R x yp (x,y))p u
L1319
Axiom. (Sep2E) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, ∀uSep2 X Y R, ∃xX, ∃yY x, u = (x,y) R x y
L1321
Axiom. (Sep2E'_impred) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, ∀x y, (x,y) Sep2 X Y R∀p : prop, (x Xy Y xR x yp)p
L1323
Axiom. (Sep2E'1) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, ∀x y, (x,y) Sep2 X Y Rx X
L1325
Axiom. (Sep2E'2) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, ∀x y, (x,y) Sep2 X Y Ry Y x
L1327
Axiom. (Sep2E'3) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, ∀x y, (x,y) Sep2 X Y RR x y
L1329
Axiom. (set_of_pairs_ext) We take the following as an axiom:
∀X Y, set_of_pairs Xset_of_pairs Y(∀v w, (v,w) X (v,w) Y)X = Y
L1333
Axiom. (Sep2_set_of_pairs) We take the following as an axiom:
∀X, ∀Y : setset, ∀R : setsetprop, set_of_pairs (Sep2 X Y R)
L1335
Axiom. (Sep2_ext) We take the following as an axiom:
∀X, ∀Y : setset, ∀R R' : setsetprop, (∀xX, ∀yY x, R x y R' x y)Sep2 X Y R = Sep2 X Y R'
L1338
Axiom. (beta2) We take the following as an axiom:
∀X, ∀Y : setset, ∀F : setsetset, ∀xX, ∀yY x, lam2 X Y F x y = F x y
L1339
Axiom. (lam2_ext) We take the following as an axiom:
∀X, ∀Y : setset, ∀F G : setsetset, (∀xX, ∀yY x, F x y = G x y)lam2 X Y F = lam2 X Y G
L1342
Axiom. (tuple_2_in_A_2) We take the following as an axiom:
∀x y A, x Ay A(x,y) A2
L1343
Axiom. (tuple_3_in_A_3) We take the following as an axiom:
∀x y z A, x Ay Az A(x,y,z) A3
L1344
Axiom. (injI) We take the following as an axiom:
∀X Y, ∀f : setset, (∀xX, f x Y)(∀x zX, f x = f zx = z)inj X Y f
L1345
Axiom. (injE_impred) We take the following as an axiom:
∀X Y, ∀f : setset, inj X Y f∀p : prop, ((∀xX, f x Y)(∀x zX, f x = f zx = z)p)p
L1346
Axiom. (bijI) We take the following as an axiom:
∀X Y, ∀f : setset, inj X Y f(∀yY, ∃xX, f x = y)bij X Y f
L1347
Axiom. (bijE_impred) We take the following as an axiom:
∀X Y, ∀f : setset, bij X Y f∀p : prop, (inj X Y f(∀yY, ∃xX, f x = y)p)p
L1348
Axiom. (PigeonHole_nat) We take the following as an axiom:
∀n, nat_p n∀f : setset, (∀iordsucc n, f i n)¬ (∀i jordsucc n, f i = f ji = j)
L1349
Axiom. (PigeonHole_nat_bij) We take the following as an axiom:
∀n, nat_p n∀f : setset, (∀in, f i n)(∀i jn, f i = f ji = j)bij n n f
L1350
Axiom. (tuple_2_bij_2) We take the following as an axiom:
∀x y, x 2y 2x ybij 2 2 (λi ⇒ (x,y) i)
L1351
Axiom. (tuple_3_bij_3) We take the following as an axiom:
∀x y z, x 3y 3z 3x yx zy zbij 3 3 (λi ⇒ (x,y,z) i)
L1352
Axiom. (In_irref_b) We take the following as an axiom:
∀X, X XFalse
L1354
Axiom. (neq_i_E) We take the following as an axiom:
∀x y, x yx = y∀p : prop, p
L1355
Axiom. (neq_i_sym_E) We take the following as an axiom:
∀x y, x yy = x∀p : prop, p
Beginning of Section Tuples
L1357
Variable x0 x1 x2 x3 : set
L1358
Axiom. (tuple_4_0_eq) We take the following as an axiom:
(x0,x1,x2,x3) 0 = x0
L1359
Axiom. (tuple_4_1_eq) We take the following as an axiom:
(x0,x1,x2,x3) 1 = x1
L1360
Axiom. (tuple_4_2_eq) We take the following as an axiom:
(x0,x1,x2,x3) 2 = x2
L1361
Axiom. (tuple_4_3_eq) We take the following as an axiom:
(x0,x1,x2,x3) 3 = x3
L1362
Variable x4 : set
L1363
Axiom. (tuple_5_0_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4) 0 = x0
L1364
Axiom. (tuple_5_1_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4) 1 = x1
L1365
Axiom. (tuple_5_2_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4) 2 = x2
L1366
Axiom. (tuple_5_3_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4) 3 = x3
L1367
Axiom. (tuple_5_4_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4) 4 = x4
L1368
Variable x5 : set
L1369
Axiom. (tuple_6_0_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5) 0 = x0
L1370
Axiom. (tuple_6_1_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5) 1 = x1
L1371
Axiom. (tuple_6_2_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5) 2 = x2
L1372
Axiom. (tuple_6_3_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5) 3 = x3
L1373
Axiom. (tuple_6_4_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5) 4 = x4
L1374
Axiom. (tuple_6_5_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5) 5 = x5
L1375
Variable x6 : set
L1376
Axiom. (tuple_7_0_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6) 0 = x0
L1377
Axiom. (tuple_7_1_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6) 1 = x1
L1378
Axiom. (tuple_7_2_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6) 2 = x2
L1379
Axiom. (tuple_7_3_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6) 3 = x3
L1380
Axiom. (tuple_7_4_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6) 4 = x4
L1381
Axiom. (tuple_7_5_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6) 5 = x5
L1382
Axiom. (tuple_7_6_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6) 6 = x6
L1383
Variable x7 : set
L1384
Axiom. (tuple_8_0_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 0 = x0
L1385
Axiom. (tuple_8_1_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 1 = x1
L1386
Axiom. (tuple_8_2_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 2 = x2
L1387
Axiom. (tuple_8_3_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 3 = x3
L1388
Axiom. (tuple_8_4_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 4 = x4
L1389
Axiom. (tuple_8_5_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 5 = x5
L1390
Axiom. (tuple_8_6_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 6 = x6
L1391
Axiom. (tuple_8_7_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7) 7 = x7
L1392
Variable x8 : set
L1393
Axiom. (tuple_9_0_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 0 = x0
L1394
Axiom. (tuple_9_1_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 1 = x1
L1395
Axiom. (tuple_9_2_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 2 = x2
L1396
Axiom. (tuple_9_3_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 3 = x3
L1397
Axiom. (tuple_9_4_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 4 = x4
L1398
Axiom. (tuple_9_5_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 5 = x5
L1399
Axiom. (tuple_9_6_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 6 = x6
L1400
Axiom. (tuple_9_7_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 7 = x7
L1401
Axiom. (tuple_9_8_eq) We take the following as an axiom:
(x0,x1,x2,x3,x4,x5,x6,x7,x8) 8 = x8
End of Section Tuples
L1403
Axiom. (tuple_4_in_A_4) We take the following as an axiom:
∀x y z w A, x Ay Az Aw A(x,y,z,w) A4
L1404
Axiom. (tuple_4_bij_4) We take the following as an axiom:
∀x y z w, x 4y 4z 4w 4x yx zx wy zy wz wbij 4 4 (λi ⇒ (x,y,z,w) i)
L1405
Axiom. (V_eq) We take the following as an axiom:
∀X : set, V_ X = xX𝒫 (V_ x)
L1406
Axiom. (V_I) We take the following as an axiom:
∀y x X : set, x Xy V_ xy V_ X
L1407
Axiom. (V_E) We take the following as an axiom:
∀y X : set, y V_ X∀p : prop, (∀xX, y V_ xp)p
L1408
Axiom. (V_Subq) We take the following as an axiom:
∀X : set, X V_ X
L1409
Axiom. (V_Subq_2) We take the following as an axiom:
∀X Y : set, X V_ YV_ X V_ Y
L1410
Axiom. (V_In) We take the following as an axiom:
∀X Y : set, X V_ YV_ X V_ Y
L1411
Axiom. (V_In_or_Subq) We take the following as an axiom:
∀X Y : set, X V_ Y V_ Y V_ X
L1412
Axiom. (V_In_or_Subq_2) We take the following as an axiom:
∀X Y : set, V_ X V_ Y V_ Y V_ X
L1413
Axiom. (iff_refl) We take the following as an axiom:
∀A : prop, A A
L1414
Axiom. (iff_sym) We take the following as an axiom:
∀A B : prop, (A B)(B A)
L1415
Axiom. (iff_trans) We take the following as an axiom:
∀A B C : prop, (A B)(B C)(A C)
L1416
Axiom. (PNoEq_ref_) We take the following as an axiom:
∀alpha, ∀p : setprop, PNoEq_ alpha p p
L1417
Axiom. (PNoEq_sym_) We take the following as an axiom:
∀alpha, ∀p q : setprop, PNoEq_ alpha p qPNoEq_ alpha q p
L1418
Axiom. (PNoEq_tra_) We take the following as an axiom:
∀alpha, ∀p q r : setprop, PNoEq_ alpha p qPNoEq_ alpha q rPNoEq_ alpha p r
L1419
Axiom. (PNoEq_antimon_) We take the following as an axiom:
∀p q : setprop, ∀alpha, ordinal alpha∀betaalpha, PNoEq_ alpha p qPNoEq_ beta p q
L1420
Axiom. (PNoLt_E_) We take the following as an axiom:
∀alpha, ∀p q : setprop, PNoLt_ alpha p q∀R : prop, (∀beta, beta alphaPNoEq_ beta p q¬ p betaq betaR)R
L1422
Axiom. (PNoLt_irref_) We take the following as an axiom:
∀alpha, ∀p : setprop, ¬ PNoLt_ alpha p p
L1423
Axiom. (PNoLt_irref__b) We take the following as an axiom:
∀alpha, ∀p : setprop, PNoLt_ alpha p pFalse
L1424
Axiom. (PNoLt_mon_) We take the following as an axiom:
∀p q : setprop, ∀alpha, ordinal alpha∀betaalpha, PNoLt_ beta p qPNoLt_ alpha p q
L1425
Axiom. (not_ex_all_demorgan_i) We take the following as an axiom:
∀P : setprop, (¬ ∃x, P x)∀x, ¬ P x
L1426
Axiom. (not_all_ex_demorgan_i) We take the following as an axiom:
∀P : setprop, ¬ (∀x, P x)∃x, ¬ P x
L1427
Axiom. (PNoLt_trichotomy_or_) We take the following as an axiom:
∀p q : setprop, ∀alpha, ordinal alphaPNoLt_ alpha p q PNoEq_ alpha p q PNoLt_ alpha q p
L1429
Axiom. (PNoLt_trichotomy_or__impred) We take the following as an axiom:
∀p q : setprop, ∀alpha, ordinal alpha∀r : prop, (PNoLt_ alpha p qr)(PNoEq_ alpha p qr)(PNoLt_ alpha q pr)r
L1431
Axiom. (PNoLt_tra_) We take the following as an axiom:
∀alpha, ordinal alpha∀p q r : setprop, PNoLt_ alpha p qPNoLt_ alpha q rPNoLt_ alpha p r
L1432
Axiom. (PNoLtI1) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, PNoLt_ (alpha beta) p qPNoLt alpha p beta q
L1434
Axiom. (PNoLtI2) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, alpha betaPNoEq_ alpha p qq alphaPNoLt alpha p beta q
L1436
Axiom. (PNoLtI3) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, beta alphaPNoEq_ beta p q¬ p betaPNoLt alpha p beta q
L1438
Axiom. (PNoLtE) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, PNoLt alpha p beta q∀R : prop, (PNoLt_ (alpha beta) p qR)(alpha betaPNoEq_ alpha p qq alphaR)(beta alphaPNoEq_ beta p q¬ p betaR)R
L1445
Axiom. (PNoLtE2) We take the following as an axiom:
∀alpha, ∀p q : setprop, PNoLt alpha p alpha qPNoLt_ alpha p q
L1447
Axiom. (PNoLt_irref) We take the following as an axiom:
∀alpha, ∀p : setprop, ¬ PNoLt alpha p alpha p
L1448
Axiom. (PNoLt_irref_b) We take the following as an axiom:
∀alpha, ∀p : setprop, PNoLt alpha p alpha pFalse
L1449
Axiom. (PNoLt_trichotomy_or) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNoLt alpha p beta q alpha = beta PNoEq_ alpha p q PNoLt beta q alpha p
L1452
Axiom. (PNoLtEq_tra) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoLt alpha p beta qPNoEq_ beta q rPNoLt alpha p beta r
L1453
Axiom. (PNoEqLt_tra) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoEq_ alpha p qPNoLt alpha q beta rPNoLt alpha p beta r
L1454
Axiom. (PNoLt_tra) We take the following as an axiom:
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLt alpha p beta qPNoLt beta q gamma rPNoLt alpha p gamma r
L1455
Axiom. (PNoLeI1) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, PNoLt alpha p beta qPNoLe alpha p beta q
L1457
Axiom. (PNoLeI2) We take the following as an axiom:
∀alpha, ∀p q : setprop, PNoEq_ alpha p qPNoLe alpha p alpha q
L1459
Axiom. (PNoLeE) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, PNoLe alpha p beta q∀r : prop, (PNoLt alpha p beta qr)(alpha = betaPNoEq_ alpha p qr)r
L1462
Axiom. (PNoLe_ref) We take the following as an axiom:
∀alpha, ∀p : setprop, PNoLe alpha p alpha p
L1463
Axiom. (PNoLe_antisym) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal beta∀p q : setprop, PNoLe alpha p beta qPNoLe beta q alpha palpha = beta PNoEq_ alpha p q
L1466
Axiom. (PNoLtLe_tra) We take the following as an axiom:
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLt alpha p beta qPNoLe beta q gamma rPNoLt alpha p gamma r
L1467
Axiom. (PNoLeLt_tra) We take the following as an axiom:
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLe alpha p beta qPNoLt beta q gamma rPNoLt alpha p gamma r
L1468
Axiom. (PNoEqLe_tra) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoEq_ alpha p qPNoLe alpha q beta rPNoLe alpha p beta r
L1469
Axiom. (PNoLeEq_tra) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal beta∀p q r : setprop, PNoLe alpha p beta qPNoEq_ beta q rPNoLe alpha p beta r
L1470
Axiom. (PNoLe_tra) We take the following as an axiom:
∀alpha beta gamma, ordinal alphaordinal betaordinal gamma∀p q r : setprop, PNoLe alpha p beta qPNoLe beta q gamma rPNoLe alpha p gamma r
L1471
Axiom. (exactly1of2_E) We take the following as an axiom:
∀A B : prop, exactly1of2 A B∀p : prop, (A¬ Bp)(¬ ABp)p
L1477
Axiom. (exactly1of3_E) We take the following as an axiom:
∀A B C : prop, exactly1of3 A B C∀p : prop, (A¬ B¬ Cp)(¬ AB¬ Cp)(¬ A¬ BCp)p
L1483
Axiom. (exu_i_E1) We take the following as an axiom:
∀P : setprop, (exu_i P)∃x, P x
L1484
Axiom. (exu_i_E2) We take the following as an axiom:
∀P : setprop, (exu_i P)∀x y, P xP yx = y
L1485
Axiom. (exu_i_I) We take the following as an axiom:
∀P : setprop, (∃x, P x)(∀x y, P xP yx = y)exu_i P
L1486
Axiom. (atleastp_I) We take the following as an axiom:
∀X Y, ∀f : setset, inj X Y fatleastp X Y
L1487
Axiom. (atleastp_E_impred) We take the following as an axiom:
∀X Y, atleastp X Y∀p : prop, (∀f : setset, inj X Y fp)p
L1489
Axiom. (ordinalI) We take the following as an axiom:
∀alpha, TransSet alpha(∀betaalpha, TransSet beta)ordinal alpha
L1490
Axiom. (reflexive_i_I) We take the following as an axiom:
∀R : setsetprop, (∀x, R x x)reflexive_i R
L1491
Axiom. (reflexive_i_E) We take the following as an axiom:
∀R : setsetprop, reflexive_i R∀x, R x x
L1492
Axiom. (irreflexive_i_I) We take the following as an axiom:
∀R : setsetprop, (∀x, ¬ R x x)irreflexive_i R
L1493
Axiom. (irreflexive_i_E) We take the following as an axiom:
∀R : setsetprop, irreflexive_i R∀x, ¬ R x x
L1494
Axiom. (symmetric_i_I) We take the following as an axiom:
∀R : setsetprop, (∀x y, R x yR y x)symmetric_i R
L1495
Axiom. (symmetric_i_E) We take the following as an axiom:
∀R : setsetprop, symmetric_i R∀x y, R x yR y x
L1496
Axiom. (antisymmetric_i_I) We take the following as an axiom:
∀R : setsetprop, (∀x y, R x yR y xx = y)antisymmetric_i R
L1497
Axiom. (antisymmetric_i_E) We take the following as an axiom:
∀R : setsetprop, antisymmetric_i R∀x y, R x yR y xx = y
L1498
Axiom. (transitive_i_I) We take the following as an axiom:
∀R : setsetprop, (∀x y z, R x yR y zR x z)transitive_i R
L1499
Axiom. (transitive_i_E) We take the following as an axiom:
∀R : setsetprop, transitive_i R∀x y z, R x yR y zR x z
L1500
Axiom. (eqreln_i_I) We take the following as an axiom:
∀R : setsetprop, reflexive_i Rsymmetric_i Rtransitive_i Reqreln_i R
L1501
Axiom. (eqreln_i_E) We take the following as an axiom:
∀R : setsetprop, eqreln_i R∀p : prop, (reflexive_i Rsymmetric_i Rtransitive_i Rp)p
L1502
Axiom. (per_i_I) We take the following as an axiom:
∀R : setsetprop, symmetric_i Rtransitive_i Rper_i R
L1503
Axiom. (per_i_E) We take the following as an axiom:
∀R : setsetprop, per_i R∀p : prop, (symmetric_i Rtransitive_i Rp)p
L1504
Axiom. (linear_i_I) We take the following as an axiom:
∀R : setsetprop, (∀x y, R x y R y x)linear_i R
L1505
Axiom. (linear_i_E) We take the following as an axiom:
∀R : setsetprop, linear_i R∀x y, R x y R y x
L1506
Axiom. (trichotomous_or_i_I) We take the following as an axiom:
∀R : setsetprop, (∀x y, R x y x = y R y x)trichotomous_or_i R
L1507
Axiom. (trichotomous_or_i_E) We take the following as an axiom:
∀R : setsetprop, trichotomous_or_i R∀x y, R x y x = y R y x
L1508
Axiom. (partialorder_i_I) We take the following as an axiom:
∀R : setsetprop, reflexive_i Rantisymmetric_i Rtransitive_i Rpartialorder_i R
L1509
Axiom. (partialorder_i_E) We take the following as an axiom:
∀R : setsetprop, partialorder_i R∀p : prop, (reflexive_i Rantisymmetric_i Rtransitive_i Rp)p
L1510
Axiom. (totalorder_i_I) We take the following as an axiom:
∀R : setsetprop, partialorder_i Rlinear_i Rtotalorder_i R
L1511
Axiom. (totalorder_i_E) We take the following as an axiom:
∀R : setsetprop, totalorder_i R∀p : prop, (partialorder_i Rlinear_i Rp)p
L1512
Axiom. (strictpartialorder_i_I) We take the following as an axiom:
∀R : setsetprop, irreflexive_i Rtransitive_i Rstrictpartialorder_i R
L1513
Axiom. (strictpartialorder_i_E) We take the following as an axiom:
∀R : setsetprop, strictpartialorder_i R∀p : prop, (irreflexive_i Rtransitive_i Rp)p
L1514
Axiom. (stricttotalorder_i_I) We take the following as an axiom:
∀R : setsetprop, strictpartialorder_i Rtrichotomous_or_i Rstricttotalorder_i R
L1515
Axiom. (stricttotalorder_i_E) We take the following as an axiom:
∀R : setsetprop, stricttotalorder_i R∀p : prop, (strictpartialorder_i Rtrichotomous_or_i Rp)p
L1516
Axiom. (binrep_I1) We take the following as an axiom:
∀X Y, ∀xX, Inj0 x binrep X Y
L1517
Axiom. (binrep_I2) We take the following as an axiom:
∀X Y Z, Z YInj1 Z binrep X Y
L1518
Axiom. (binrep_E) We take the following as an axiom:
∀X Y, ∀zbinrep X Y, ∀p : setprop, (∀xX, p (Inj0 x))(∀Z, Z Yp (Inj1 Z))p z
L1522
Axiom. (equip_mod_I1) We take the following as an axiom:
∀X Y M Z V, equip (X + Z) Yequip (V Z) Mequip_mod X Y M
L1523
Axiom. (equip_mod_I2) We take the following as an axiom:
∀X Y M Z V, equip (Y + Z) Xequip (V Z) Mequip_mod X Y M
L1524
Axiom. (equip_mod_E) We take the following as an axiom:
∀X Y M, equip_mod X Y M∀p : prop, (∀Z V, equip (X + Z) Yequip (V Z) Mp)(∀Z V, equip (Y + Z) Xequip (V Z) Mp)p
L1528
Axiom. (tuple_p_I) We take the following as an axiom:
∀n x, (∀ux, ∃in, ∃v, u = i + v)tuple_p n x
L1529
Axiom. (tuple_p_E) We take the following as an axiom:
∀n x, tuple_p n x∀ux, ∃in, ∃v, u = i + v
L1530
Axiom. (setexp_I) We take the following as an axiom:
∀X Y, ∀f(xX, Y), f YX
L1531
Axiom. (setexp_E) We take the following as an axiom:
∀X Y, ∀fYX, f xX, Y
L1532
Axiom. (lam2_I) We take the following as an axiom:
∀X, ∀Y : setset, ∀F : setsetset, ∀xX, ∀yY x, ∀zF x y, x + (y + z) lam2 X Y F
L1535
Axiom. (lam2_E) We take the following as an axiom:
∀X, ∀Y : setset, ∀F : setsetset, ∀wlam2 X Y F, ∃xX, ∃yY x, ∃zF x y, w = x + (y + z)
L1539
Axiom. (lam2_E_impred) We take the following as an axiom:
∀X, ∀Y : setset, ∀F : setsetset, ∀wlam2 X Y F, ∀p : setprop, (∀xX, ∀yY x, ∀zF x y, p (x + (y + z)))p w
L1544
Axiom. (lam2_I2) We take the following as an axiom:
∀X, ∀Y : setset, ∀F : setsetset, ∀xX, ∀yY x, ∀zF x y, (x,(y,z)) lam2 X Y F
L1547
Axiom. (lam2_E2) We take the following as an axiom:
∀X, ∀Y : setset, ∀F : setsetset, ∀wlam2 X Y F, ∃xX, ∃yY x, ∃zF x y, w = (x,(y,z))
L1551
Axiom. (lam2_E2_impred) We take the following as an axiom:
∀X, ∀Y : setset, ∀F : setsetset, ∀wlam2 X Y F, ∀p : setprop, (∀xX, ∀yY x, ∀zF x y, p (x,(y,z)))p w
L1556
Axiom. (binop_on_I) We take the following as an axiom:
∀X, ∀f : setsetset, (∀x yX, f x y X)binop_on X f
L1557
Axiom. (binop_on_E) We take the following as an axiom:
∀X, ∀f : setsetset, binop_on X f∀x yX, f x y X
Beginning of Section NatRec
L1560
Variable z : set
L1562
Variable f : setsetset
L1563
Let F : set(setset)setλn g ⇒ if n n then f ( n) (g ( n)) else z
L1564
Axiom. (nat_primrec_r) We take the following as an axiom:
∀X : set, ∀g h : setset, (∀xX, g x = h x)F X g = F X h
L1566
Axiom. (nat_primrec_0) We take the following as an axiom:
L1567
Axiom. (nat_primrec_S) We take the following as an axiom:
∀n : set, nat_p nnat_primrec z f (ordsucc n) = f n (nat_primrec z f n)
End of Section NatRec
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_nat.
L1572
Axiom. (add_nat_0R) We take the following as an axiom:
∀n : set, n + 0 = n
L1574
Axiom. (add_nat_SR) We take the following as an axiom:
∀n m : set, nat_p mn + ordsucc m = ordsucc (n + m)
L1575
Axiom. (add_nat_p) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p mnat_p (n + m)
L1576
Axiom. (add_nat_asso) We take the following as an axiom:
∀n : set, ∀m : set, nat_p m∀k : set, nat_p k(n + m) + k = n + (m + k)
L1577
Axiom. (add_nat_0L) We take the following as an axiom:
∀m : set, nat_p m0 + m = m
L1578
Axiom. (add_nat_SL) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p mordsucc n + m = ordsucc (n + m)
L1579
Axiom. (add_nat_com) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p mn + m = m + n
L1580
Axiom. (ordsucc_add_nat_1) We take the following as an axiom:
∀n, ordsucc n = n + 1
L1581
Axiom. (add_nat_1_1_2) We take the following as an axiom:
1 + 1 = 2
L1582
Axiom. (add_nat_leq) We take the following as an axiom:
∀n m, nat_p mn n + m
L1583
Axiom. (add_nat_ltL) We take the following as an axiom:
∀k, nat_p k∀mk, ∀n, nat_p nm + n k + n
L1584
Axiom. (add_nat_ltR) We take the following as an axiom:
∀k, nat_p k∀mk, ∀n, nat_p nn + m n + k
L1585
Axiom. (add_nat_mem_impred) We take the following as an axiom:
∀m, ∀n, nat_p n∀ym + n, ∀p : prop, (y mp)(∀in, y = m + ip)p
L1586
Axiom. (add_nat_cancelR) We take the following as an axiom:
∀i j n, nat_p ni + n = j + ni = j
L1587
Axiom. (add_nat_cancelL) We take the following as an axiom:
∀n i j, nat_p nnat_p inat_p jn + i = n + ji = j
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_nat.
L1590
Axiom. (mul_nat_0R) We take the following as an axiom:
∀n : set, n * 0 = 0
L1591
Axiom. (mul_nat_SR) We take the following as an axiom:
∀n m : set, nat_p mn * ordsucc m = n + n * m
L1592
Axiom. (mul_nat_p) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p mnat_p (n * m)
L1593
Axiom. (mul_nat_0L) We take the following as an axiom:
∀m : set, nat_p m0 * m = 0
L1594
Axiom. (mul_nat_SL) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p mordsucc n * m = n * m + m
L1595
Axiom. (mul_nat_com) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p mn * m = m * n
L1596
Axiom. (mul_add_nat_distrL) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p m∀k : set, nat_p kn * (m + k) = n * m + n * k
L1597
Axiom. (mul_add_nat_distrR) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p m∀k : set, nat_p k(n + m) * k = n * k + m * k
L1598
Axiom. (mul_nat_asso) We take the following as an axiom:
∀n : set, nat_p n∀m : set, nat_p m∀k : set, nat_p k(n * m) * k = n * (m * k)
L1599
Definition. We define exp_nat to be λn m : setnat_primrec 1 (λ_ r ⇒ n * r) m of type setsetset.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_nat.
L1602
Axiom. (exp_nat_0) We take the following as an axiom:
∀n, n ^ 0 = 1
L1603
Axiom. (exp_nat_S) We take the following as an axiom:
∀n m, nat_p mn ^ (ordsucc m) = n * n ^ m
L1604
Axiom. (equipI) We take the following as an axiom:
∀X Y, ∀f : setset, bij X Y fequip X Y
L1605
Axiom. (equipE_impred) We take the following as an axiom:
∀X Y, equip X Y∀p : prop, (∀f : setset, bij X Y fp)p
L1606
Axiom. (inj_incl) We take the following as an axiom:
∀X Y, X Yinj X Y (λx ⇒ x)
L1608
Axiom. (inj_id) We take the following as an axiom:
∀X, inj X X (λx ⇒ x)
L1609
Axiom. (bij_id) We take the following as an axiom:
∀X, bij X X (λx ⇒ x)
L1610
Definition. We define inv to be λX f ⇒ λy : setEps_i (λx ⇒ x X f x = y) of type set(setset)setset.
L1612
Axiom. (surj_rinv) We take the following as an axiom:
∀X Y, ∀f : setset, (∀wY, ∃uX, f u = w)∀yY, inv X f y X f (inv X f y) = y
L1614
Axiom. (inj_linv) We take the following as an axiom:
∀X Y, ∀f : setset, (∀u vX, f u = f vu = v)∀xX, inv X f (f x) = x
L1615
Axiom. (bij_inv) We take the following as an axiom:
∀X Y, ∀f : setset, bij X Y fbij Y X (inv X f)
L1616
Axiom. (inj_comp) We take the following as an axiom:
∀X Y Z : set, ∀f g : setset, inj X Y finj Y Z ginj X Z (λx ⇒ g (f x))
L1617
Axiom. (bij_comp) We take the following as an axiom:
∀X Y Z : set, ∀f g : setset, bij X Y fbij Y Z gbij X Z (λx ⇒ g (f x))
L1618
Axiom. (equip_ref) We take the following as an axiom:
∀X, equip X X
L1619
Axiom. (equip_sym) We take the following as an axiom:
∀X Y, equip X Yequip Y X
L1620
Axiom. (equip_tra) We take the following as an axiom:
∀X Y Z, equip X Yequip Y Zequip X Z
L1621
Axiom. (inj_setsum_Inj0) We take the following as an axiom:
∀X Y, inj X (X + Y) Inj0
L1622
Axiom. (inj_setsum_Inj1) We take the following as an axiom:
∀X Y, inj Y (X + Y) Inj1
L1623
Axiom. (equip_setsum_Empty_R) We take the following as an axiom:
∀X, equip (X + 0) X
L1624
Axiom. (setsum_binunion_distrR) We take the following as an axiom:
∀X Y Z, X + (Y Z) = (X + Y) (X + Z)
L1625
Axiom. (equip_setsum_add_nat) We take the following as an axiom:
∀n, nat_p n∀m, nat_p mequip (n + m) (n + m)
L1626
Axiom. (combine_funcs_fun) We take the following as an axiom:
∀X Y Z, ∀f g : setset, (∀xX, f x Z)(∀yY, g y Z)∀uX + Y, combine_funcs X Y f g u Z
L1627
Axiom. (combine_funcs_inj) We take the following as an axiom:
∀X Y Z, ∀f g : setset, inj X Z finj Y Z g(∀xX, ∀yY, f x g y)inj (X + Y) Z (combine_funcs X Y f g)
L1628
Axiom. (inj_Inj0) We take the following as an axiom:
∀X Y, inj X (X + Y) Inj0
L1629
Axiom. (inj_Inj1) We take the following as an axiom:
∀X Y, inj Y (X + Y) Inj1
L1630
Axiom. (equip_setsum_cong) We take the following as an axiom:
∀X Y Z W, equip X Zequip Y Wequip (X + Y) (Z + W)
L1631
Axiom. (equip_setsum_add_nat_2) We take the following as an axiom:
∀n, nat_p n∀m, nat_p m∀X Y, equip X nequip Y mequip (X + Y) (n + m)
L1632
Axiom. (LoopI) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, binop_on X mbinop_on X bbinop_on X s(∀xX, (m e x = x m x e = x))(∀x yX, (b x (m x y) = y m x (b x y) = y s (m x y) y = x m (s x y) y = x))Loop X m b s e
L1640
Axiom. (LoopE) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, Loop X m b s e∀p : prop, (binop_on X mbinop_on X bbinop_on X s(∀xX, (m e x = x m x e = x))(∀x yX, (b x (m x y) = y m x (b x y) = y s (m x y) y = x m (s x y) y = x))p)p
L1649
Axiom. (Loop_with_defs_I) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop X m b s e(∀x yX, K x y = b (m y x) (m x y))(∀x y zX, a x y z = b (m x (m y z)) (m (m x y) z))(∀x uX, T x u = b x (m u x) I1 x u = m x (m u (b x e)) J1 x u = m (m (s e x) u) x I2 x u = m (b x u) (b (b x e) e) J2 x u = m (s e (s e x)) (s u x))(∀x y uX, L x y u = b (m y x) (m y (m x u)) R x y u = s (m (m u x) y) (m x y))Loop_with_defs X m b s e K a T L R I1 J1 I2 J2
L1664
Axiom. (Loop_with_defs_E) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop_with_defs X m b s e K a T L R I1 J1 I2 J2∀p : prop, (Loop X m b s e(∀x yX, K x y = b (m y x) (m x y))(∀x y zX, a x y z = b (m x (m y z)) (m (m x y) z))(∀x uX, T x u = b x (m u x) I1 x u = m x (m u (b x e)) J1 x u = m (m (s e x) u) x I2 x u = m (b x u) (b (b x e) e) J2 x u = m (s e (s e x)) (s u x))(∀x y uX, L x y u = b (m y x) (m y (m x u)) R x y u = s (m (m u x) y) (m x y))p)p
L1682
Axiom. (Loop_with_defs_cex1_I0) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop_with_defs X m b s e K a T L R I1 J1 I2 J2(∃u x y wX, K (m (b (L x y u) e) u) w e)Loop_with_defs_cex1 X m b s e K a T L R I1 J1 I2 J2
L1689
Axiom. (Loop_with_defs_cex1_E0) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop_with_defs_cex1 X m b s e K a T L R I1 J1 I2 J2∀p : prop, (Loop_with_defs X m b s e K a T L R I1 J1 I2 J2(∃u x y wX, K (m (b (L x y u) e) u) w e)p)p
L1699
Axiom. (Loop_with_defs_cex1_I) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, ∀u x y wX, Loop_with_defs X m b s e K a T L R I1 J1 I2 J2K (m (b (L x y u) e) u) w eLoop_with_defs_cex1 X m b s e K a T L R I1 J1 I2 J2
L1707
Axiom. (andE_imp) We take the following as an axiom:
∀A B p : prop, (ABp)(A Bp)
L1708
Axiom. (orE_imp) We take the following as an axiom:
∀A B p : prop, (Ap)(Bp)(A Bp)
L1709
Axiom. (Loop_with_defs_cex1_E) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop_with_defs_cex1 X m b s e K a T L R I1 J1 I2 J2∀p : prop, (∀u x y wX, Loop_with_defs X m b s e K a T L R I1 J1 I2 J2K (m (b (L x y u) e) u) w ep)p
L1720
Axiom. (Loop_with_defs_cex2_I0) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop_with_defs X m b s e K a T L R I1 J1 I2 J2(∃u x y z wX, a w (m (s e u) (R x y u)) z e)Loop_with_defs_cex2 X m b s e K a T L R I1 J1 I2 J2
L1727
Axiom. (Loop_with_defs_cex2_E0) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop_with_defs_cex2 X m b s e K a T L R I1 J1 I2 J2∀p : prop, (Loop_with_defs X m b s e K a T L R I1 J1 I2 J2(∃u x y z wX, a w (m (s e u) (R x y u)) z e)p)p
L1737
Axiom. (Loop_with_defs_cex2_I) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, ∀u x y z wX, Loop_with_defs X m b s e K a T L R I1 J1 I2 J2a w (m (s e u) (R x y u)) z eLoop_with_defs_cex2 X m b s e K a T L R I1 J1 I2 J2
L1745
Axiom. (Loop_with_defs_cex2_E) We take the following as an axiom:
∀X, ∀m b s : setsetset, ∀e : set, ∀K : setsetset, ∀a : setsetsetset, ∀T : setsetset, ∀L R : setsetsetset, ∀I1 J1 I2 J2 : setsetset, Loop_with_defs_cex2 X m b s e K a T L R I1 J1 I2 J2∀p : prop, (∀u x y z wX, Loop_with_defs X m b s e K a T L R I1 J1 I2 J2a w (m (s e u) (R x y u)) z ep)p
L1756
Axiom. (binop_on_1) We take the following as an axiom:
binop_on 1 (λx y ⇒ 0)
L1757
Axiom. (Trivial_Loop) We take the following as an axiom:
Loop 1 (λx y ⇒ 0) (λx y ⇒ 0) (λx y ⇒ 0) 0
L1758
Definition. We define binop_table_2 to be λx_0_0 x_0_1 x_1_0 x_1_1 i j ⇒ ((x_0_0,x_0_1),(x_1_0,x_1_1)) i j of type setsetsetsetsetsetset.
L1766
Axiom. (binop_table_2_0_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_1_0 x_1_1, binop_table_2 x_0_0 x_0_1 x_1_0 x_1_1 0 0 = x_0_0
L1773
Axiom. (binop_table_2_0_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_1_0 x_1_1, binop_table_2 x_0_0 x_0_1 x_1_0 x_1_1 0 1 = x_0_1
L1780
Axiom. (binop_table_2_1_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_1_0 x_1_1, binop_table_2 x_0_0 x_0_1 x_1_0 x_1_1 1 0 = x_1_0
L1787
Axiom. (binop_table_2_1_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_1_0 x_1_1, binop_table_2 x_0_0 x_0_1 x_1_0 x_1_1 1 1 = x_1_1
L1794
Axiom. (binop_table_on_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_1_0 x_1_12, binop_on 2 (binop_table_2 x_0_0 x_0_1 x_1_0 x_1_1)
L1801
Axiom. (Z2_table_binop_on_2) We take the following as an axiom:
L1805
Axiom. (Z2_Loop) We take the following as an axiom:
L1816
Definition. We define binop_table_3 to be λx_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 i j ⇒ ((x_0_0,x_0_1,x_0_2),(x_1_0,x_1_1,x_1_2),(x_2_0,x_2_1,x_2_2)) i j of type setsetsetsetsetsetsetsetsetsetsetset.
L1826
Axiom. (binop_table_3_0_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 0 0 = x_0_0
L1835
Axiom. (binop_table_3_0_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 0 1 = x_0_1
L1844
Axiom. (binop_table_3_0_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 0 2 = x_0_2
L1853
Axiom. (binop_table_3_1_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 1 0 = x_1_0
L1862
Axiom. (binop_table_3_1_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 1 1 = x_1_1
L1871
Axiom. (binop_table_3_1_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 1 2 = x_1_2
L1880
Axiom. (binop_table_3_2_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 2 0 = x_2_0
L1889
Axiom. (binop_table_3_2_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 2 1 = x_2_1
L1898
Axiom. (binop_table_3_2_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2, binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2 2 2 = x_2_2
L1907
Axiom. (binop_table_on_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_23, binop_on 3 (binop_table_3 x_0_0 x_0_1 x_0_2 x_1_0 x_1_1 x_1_2 x_2_0 x_2_1 x_2_2)
L1916
Definition. We define binop_table_4 to be λx_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 i j ⇒ ((x_0_0,x_0_1,x_0_2,x_0_3),(x_1_0,x_1_1,x_1_2,x_1_3),(x_2_0,x_2_1,x_2_2,x_2_3),(x_3_0,x_3_1,x_3_2,x_3_3)) i j of type setsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetset.
L1928
Axiom. (binop_table_4_0_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 0 0 = x_0_0
L1939
Axiom. (binop_table_4_0_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 0 1 = x_0_1
L1950
Axiom. (binop_table_4_0_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 0 2 = x_0_2
L1961
Axiom. (binop_table_4_0_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 0 3 = x_0_3
L1972
Axiom. (binop_table_4_1_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 1 0 = x_1_0
L1983
Axiom. (binop_table_4_1_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 1 1 = x_1_1
L1994
Axiom. (binop_table_4_1_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 1 2 = x_1_2
L2005
Axiom. (binop_table_4_1_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 1 3 = x_1_3
L2016
Axiom. (binop_table_4_2_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 2 0 = x_2_0
L2027
Axiom. (binop_table_4_2_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 2 1 = x_2_1
L2038
Axiom. (binop_table_4_2_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 2 2 = x_2_2
L2049
Axiom. (binop_table_4_2_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 2 3 = x_2_3
L2060
Axiom. (binop_table_4_3_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 3 0 = x_3_0
L2071
Axiom. (binop_table_4_3_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 3 1 = x_3_1
L2082
Axiom. (binop_table_4_3_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 3 2 = x_3_2
L2093
Axiom. (binop_table_4_3_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3, binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3 3 3 = x_3_3
L2104
Axiom. (binop_table_on_4) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_34, binop_on 4 (binop_table_4 x_0_0 x_0_1 x_0_2 x_0_3 x_1_0 x_1_1 x_1_2 x_1_3 x_2_0 x_2_1 x_2_2 x_2_3 x_3_0 x_3_1 x_3_2 x_3_3)
L2115
Definition. We define binop_table_5 to be λx_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 i j ⇒ ((x_0_0,x_0_1,x_0_2,x_0_3,x_0_4),(x_1_0,x_1_1,x_1_2,x_1_3,x_1_4),(x_2_0,x_2_1,x_2_2,x_2_3,x_2_4),(x_3_0,x_3_1,x_3_2,x_3_3,x_3_4),(x_4_0,x_4_1,x_4_2,x_4_3,x_4_4)) i j of type setsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetset.
L2129
Axiom. (binop_table_5_0_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 0 0 = x_0_0
L2142
Axiom. (binop_table_5_0_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 0 1 = x_0_1
L2155
Axiom. (binop_table_5_0_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 0 2 = x_0_2
L2168
Axiom. (binop_table_5_0_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 0 3 = x_0_3
L2181
Axiom. (binop_table_5_0_4) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 0 4 = x_0_4
L2194
Axiom. (binop_table_5_1_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 1 0 = x_1_0
L2207
Axiom. (binop_table_5_1_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 1 1 = x_1_1
L2220
Axiom. (binop_table_5_1_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 1 2 = x_1_2
L2233
Axiom. (binop_table_5_1_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 1 3 = x_1_3
L2246
Axiom. (binop_table_5_1_4) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 1 4 = x_1_4
L2259
Axiom. (binop_table_5_2_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 2 0 = x_2_0
L2272
Axiom. (binop_table_5_2_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 2 1 = x_2_1
L2285
Axiom. (binop_table_5_2_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 2 2 = x_2_2
L2298
Axiom. (binop_table_5_2_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 2 3 = x_2_3
L2311
Axiom. (binop_table_5_2_4) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 2 4 = x_2_4
L2324
Axiom. (binop_table_5_3_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 3 0 = x_3_0
L2337
Axiom. (binop_table_5_3_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 3 1 = x_3_1
L2350
Axiom. (binop_table_5_3_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 3 2 = x_3_2
L2363
Axiom. (binop_table_5_3_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 3 3 = x_3_3
L2376
Axiom. (binop_table_5_3_4) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 3 4 = x_3_4
L2389
Axiom. (binop_table_5_4_0) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 4 0 = x_4_0
L2402
Axiom. (binop_table_5_4_1) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 4 1 = x_4_1
L2415
Axiom. (binop_table_5_4_2) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 4 2 = x_4_2
L2428
Axiom. (binop_table_5_4_3) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 4 3 = x_4_3
L2441
Axiom. (binop_table_5_4_4) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4, binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4 4 4 = x_4_4
L2454
Axiom. (binop_table_on_5) We take the following as an axiom:
∀x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_45, binop_on 5 (binop_table_5 x_0_0 x_0_1 x_0_2 x_0_3 x_0_4 x_1_0 x_1_1 x_1_2 x_1_3 x_1_4 x_2_0 x_2_1 x_2_2 x_2_3 x_2_4 x_3_0 x_3_1 x_3_2 x_3_3 x_3_4 x_4_0 x_4_1 x_4_2 x_4_3 x_4_4)
Beginning of Section Combinators
L2469
Let K : setInj0
L2470
Let S : setInj0 (𝒫 )
L2471
Let Ap : setsetsetλW Z : setInj1 (W + Z)
L2472
Axiom. (combinator_K) We take the following as an axiom:
L2474
Axiom. (combinator_S) We take the following as an axiom:
L2475
Axiom. (combinator_Ap) We take the following as an axiom:
∀X Y, combinator Xcombinator Ycombinator (Ap X Y)
L2476
Axiom. (combinator_ind) We take the following as an axiom:
∀p : setprop, p Kp S(∀X Y, combinator Xp Xcombinator Yp Yp (Ap X Y))∀X, combinator Xp X
L2481
Axiom. (combinator_equiv_sym) We take the following as an axiom:
L2482
Axiom. (combinator_equiv_tra) We take the following as an axiom:
∀X Y Z, combinator_equiv X Ycombinator_equiv Y Zcombinator_equiv X Z
L2483
Axiom. (combinator_equiv_Ap) We take the following as an axiom:
∀X Y Z W, combinator Xcombinator Ycombinator Zcombinator Wcombinator_equiv X Zcombinator_equiv Y Wcombinator_equiv (Ap X Y) (Ap Z W)
L2491
Axiom. (combinator_equiv_K) We take the following as an axiom:
∀X Y, combinator_equiv (Ap (Ap K X) Y) X
L2492
Axiom. (combinator_equiv_S) We take the following as an axiom:
∀X Y Z, combinator_equiv (Ap (Ap (Ap S X) Y) Z) (Ap (Ap X Z) (Ap Y Z))
L2493
Axiom. (combinator_equiv_ref) We take the following as an axiom:
L2494
Axiom. (combinator_equiv_ind) We take the following as an axiom:
∀r : setsetprop, per_i r(∀X, combinator Xr X X)(∀X Y Z W, combinator Xcombinator Ycombinator Zcombinator Wcombinator_equiv X Zr X Zcombinator_equiv Y Wr Y Wr (Ap X Y) (Ap Z W))(∀W Z, r (Ap (Ap K W) Z) W)(∀W Z V, r (Ap (Ap (Ap S W) Z) V) (Ap (Ap W V) (Ap Z V)))∀X Y, combinator_equiv X Yr X Y
L2505
Axiom. (combinator_SKK) We take the following as an axiom:
∀X, combinator_equiv (Ap (Ap (Ap S K) K) X) X
End of Section Combinators
L2508
Axiom. (setprod_I) We take the following as an axiom:
∀X Y, ∀u(λ_XY), u X Y
L2510
Axiom. (setprod_E) We take the following as an axiom:
∀X Y, ∀uX Y, u (λ_XY)
L2512
Axiom. (ap0_setprod) We take the following as an axiom:
∀X Y, ∀zX Y, z 0 X
L2514
Axiom. (ap1_setprod) We take the following as an axiom:
∀X Y, ∀zX Y, z 1 Y
L2516
Axiom. (tuple_setprod_eta) We take the following as an axiom:
∀X Y, ∀zX Y, (z 0,z 1) = z
L2518
Axiom. (lam_setexp) We take the following as an axiom:
∀X Y, ∀F : setset, (∀xX, F x Y)(λxXF x) YX
L2520
Axiom. (ap_setexp) We take the following as an axiom:
∀X Y, ∀fYX, ∀xX, f x Y
L2522
Axiom. (setexp_ext) We take the following as an axiom:
∀X Y, ∀f gYX, (∀xX, f x = g x)f = g
L2524
Axiom. (setexp_eta) We take the following as an axiom:
∀X Y, ∀fYX, (λxXf x) = f
L2526
Axiom. (mul_nat_1R) We take the following as an axiom:
∀n, n * 1 = n
L2528
Axiom. (mul_nat_1L) We take the following as an axiom:
∀n, nat_p n1 * n = n
L2530
Axiom. (exp_nat_p) We take the following as an axiom:
∀n, nat_p n∀m, nat_p mnat_p (n ^ m)
L2532
Axiom. (exp_nat_1) We take the following as an axiom:
∀n, n ^ 1 = n
L2534
Axiom. (exp_nat_2_mul_nat) We take the following as an axiom:
∀n, n ^ 2 = n * n
L2536
Axiom. (nat_inv_impred) We take the following as an axiom:
∀n, nat_p n∀p : setprop, p 0(∀m, nat_p mn = ordsucc mp (ordsucc m))p n
L2541
Axiom. (pos_nat_inv_impred) We take the following as an axiom:
∀n, nat_p n∀in, ∀p : setprop, (∀m, nat_p mn = ordsucc mp (ordsucc m))p n
L2545
Axiom. (add_nat_leL) We take the following as an axiom:
∀m k n, nat_p mnat_p km knat_p nm + n k + n
L2547
Axiom. (add_nat_leR) We take the following as an axiom:
∀n m k, nat_p nnat_p mnat_p km kn + m n + k
L2549
Axiom. (add_nat_leL_2) We take the following as an axiom:
∀n m, nat_p nnat_p mn m + n
L2551
Axiom. (add_nat_leR_2) We take the following as an axiom:
∀n m, nat_p nnat_p mn n + m
L2553
Axiom. (mul_nat_ltL) We take the following as an axiom:
∀k, nat_p k∀mk, ∀n, nat_p nm * (ordsucc n) k * (ordsucc n)
L2555
Axiom. (mul_nat_ltR) We take the following as an axiom:
∀k, nat_p k∀mk, ∀n, nat_p nordsucc n * m ordsucc n * k
L2557
Axiom. (mul_nat_leL) We take the following as an axiom:
∀m k, nat_p mnat_p km k∀n, nat_p nm * n k * n
L2559
Axiom. (mul_nat_leR) We take the following as an axiom:
∀n m k, nat_p nnat_p mnat_p km kn * m n * k
L2561
Axiom. (quot_rem_nat_impred) We take the following as an axiom:
∀m, nat_p m∀n, nat_p n∀ym * n, ∀p : prop, (∀im, ∀jn, y = i + j * m(∀i'm, ∀j'n, y = i' + j' * mi' = i j' = j)p)p
L2563
Axiom. (add_mul_nat_lt) We take the following as an axiom:
∀n m, nat_p nnat_p m∀in, ∀jm, i + j * n n * m
L2565
Axiom. (equip_setprod_mul_nat) We take the following as an axiom:
∀n m, nat_p nnat_p mequip (n m) (n * m)
L2567
Axiom. (equip_setprod_cong) We take the following as an axiom:
∀X Y Z W, equip X Zequip Y Wequip (X Y) (Z W)
L2569
Axiom. (equip_setprod_mul_nat_2) We take the following as an axiom:
∀n, nat_p n∀m, nat_p m∀X Y, equip X nequip Y mequip (X Y) (n * m)
L2571
Axiom. (equip_setexp_2) We take the following as an axiom:
∀n, nat_p n∀X, equip X nequip (X2) (n * n)
L2573
Axiom. (equip_setexp_2b) We take the following as an axiom:
∀n, nat_p n∀X, equip X nequip (X2) (n ^ 2)
L2575
Axiom. (equip_setexp_ordsucc_setprod) We take the following as an axiom:
∀n X, equip (Xordsucc n) (X (Xn))
L2577
Axiom. (equip_setexp_3) We take the following as an axiom:
∀n, nat_p n∀X, equip X nequip (X3) (n ^ 3)
L2579
Axiom. (SetAdjoinI1) We take the following as an axiom:
∀X y, ∀xX, x SetAdjoin X y
L2581
Axiom. (SetAdjoinI2) We take the following as an axiom:
∀X y, y SetAdjoin X y
L2583
Axiom. (SetAdjoinE) We take the following as an axiom:
∀X y, ∀zSetAdjoin X y, ∀p : prop, (z Xp)(z = yp)p
L2585
Axiom. (PNoEq__I) We take the following as an axiom:
∀alpha, ∀p q : setprop, (∀betaalpha, p beta q beta)PNoEq_ alpha p q
L2587
Axiom. (PNoEq__E) We take the following as an axiom:
∀alpha, ∀p q : setprop, ∀r : prop, ((∀betaalpha, p beta q beta)r)PNoEq_ alpha p qr
L2591
Axiom. (PNoLt__I) We take the following as an axiom:
∀beta alpha, beta alpha∀p q : setprop, PNoEq_ beta p q¬ p betaq betaPNoLt_ alpha p q
L2594
Axiom. (PNoLt__E) We take the following as an axiom:
∀alpha, ∀p q : setprop, ∀r : prop, (∀betaalpha, PNoEq_ beta p q¬ p betaq betar)PNoLt_ alpha p qr
L2598
Axiom. (PNoLt_trichotomy_or_impred) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, ordinal alphaordinal beta∀r : prop, (PNoLt alpha p beta qr)(alpha = betaPNoEq_ alpha p qr)(PNoLt beta q alpha pr)r
L2606
Axiom. (PNoLe_antisym_impred) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal beta∀p q : setprop, PNoLe alpha p beta qPNoLe beta q alpha p∀r : prop, (alpha = betaPNoEq_ alpha p qr)r
L2613
Axiom. (PNo_downc_I) We take the following as an axiom:
∀beta, ∀q : setprop, ∀L : set(setprop)prop, ∀alpha, ∀p : setprop, ordinal betaL beta qPNoLe alpha p beta qPNo_downc L alpha p
L2619
Axiom. (PNo_downc_E) We take the following as an axiom:
∀L : set(setprop)prop, ∀alpha, ∀p : setprop, ∀r : prop, (∀beta, ordinal beta∀q : setprop, L beta qPNoLe alpha p beta qr)PNo_downc L alpha pr
L2625
Axiom. (PNo_upc_I) We take the following as an axiom:
∀beta, ∀q : setprop, ∀R : set(setprop)prop, ∀alpha, ∀p : setprop, ordinal betaR beta qPNoLe beta q alpha pPNo_upc R alpha p
L2631
Axiom. (PNo_upc_E) We take the following as an axiom:
∀R : set(setprop)prop, ∀alpha, ∀p : setprop, ∀r : prop, (∀beta, ordinal beta∀q : setprop, R beta qPNoLe beta q alpha pr)PNo_upc R alpha pr
L2637
Axiom. (PNo_downc_ref) We take the following as an axiom:
∀L : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, L alpha pPNo_downc L alpha p
L2639
Axiom. (PNo_upc_ref) We take the following as an axiom:
∀R : set(setprop)prop, ∀alpha, ordinal alpha∀p : setprop, R alpha pPNo_upc R alpha p
L2641
Axiom. (PNoLe_downc) We take the following as an axiom:
∀L : set(setprop)prop, ∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNo_downc L alpha pPNoLe beta q alpha pPNo_downc L beta q
L2645
Axiom. (PNoLe_upc) We take the following as an axiom:
∀R : set(setprop)prop, ∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNo_upc R alpha pPNoLe alpha p beta qPNo_upc R beta q
L2649
Definition. We define PNoLt_pwise to be λL R ⇒ ∀gamma, ordinal gamma∀p : setprop, L gamma p∀delta, ordinal delta∀q : setprop, R delta qPNoLt gamma p delta q of type (set(setprop)prop)(set(setprop)prop)prop.
L2652
Axiom. (PNoLt_pwise_downc_upc) We take the following as an axiom:
∀L R : set(setprop)prop, PNoLt_pwise L RPNoLt_pwise (PNo_downc L) (PNo_upc R)
Beginning of Section TaggedSets
L2657
Let tag : setsetλalpha ⇒ SetAdjoin alpha {1}
Notation. We use ' as a postfix operator with priority 100 corresponding to applying term tag.
L2660
Axiom. (not_TransSet_Sing1) We take the following as an axiom:
L2662
Axiom. (not_ordinal_Sing1) We take the following as an axiom:
L2664
Axiom. (tagged_not_ordinal) We take the following as an axiom:
∀y, ordinal (y ')False
L2666
Axiom. (tagged_notin_ordinal) We take the following as an axiom:
∀alpha y, ordinal alpha(y ') alphaFalse
L2668
Axiom. (tagged_eqE_Subq) We take the following as an axiom:
∀alpha beta, ordinal alphaalpha ' = beta 'alpha beta
L2670
Axiom. (tagged_eqE_eq) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal betaalpha ' = beta 'alpha = beta
L2672
Axiom. (tagged_ReplE) We take the following as an axiom:
∀alpha beta, ordinal alphaordinal betabeta ' {gamma '|gammaalpha}beta alpha
L2674
Axiom. (ordinal_notin_tagged_Repl) We take the following as an axiom:
∀alpha Y, ordinal alphaalpha {y '|yY}False
L2676
Axiom. (SNoElts__I1) We take the following as an axiom:
∀alpha, ∀betaalpha, beta SNoElts_ alpha
L2678
Axiom. (SNoElts__I2) We take the following as an axiom:
∀alpha, ∀betaalpha, beta ' SNoElts_ alpha
L2680
Axiom. (SNoElts__E) We take the following as an axiom:
∀alpha, ∀p : setprop, (∀betaalpha, p beta)(∀betaalpha, p (beta '))∀xSNoElts_ alpha, p x
L2685
Axiom. (SNoElts_mon) We take the following as an axiom:
∀alpha beta, alpha betaSNoElts_ alpha SNoElts_ beta
L2687
Axiom. (SNo__I) We take the following as an axiom:
∀alpha x, x SNoElts_ alpha(∀betaalpha, exactly1of2 (beta ' x) (beta x))SNo_ alpha x
L2691
Axiom. (SNo__E) We take the following as an axiom:
∀alpha x, ∀p : prop, (x SNoElts_ alpha(∀betaalpha, exactly1of2 (beta ' x) (beta x))p)SNo_ alpha xp
L2695
Axiom. (PSNo_I1) We take the following as an axiom:
∀alpha, ∀p : setprop, ∀betaalpha, p betabeta PSNo alpha p
L2697
Axiom. (PSNo_I2) We take the following as an axiom:
∀alpha, ∀p : setprop, ∀betaalpha, ¬ p betabeta ' PSNo alpha p
L2699
Axiom. (PSNo_E) We take the following as an axiom:
∀alpha, ∀p q : setprop, (∀betaalpha, p betaq beta)(∀betaalpha, ¬ p betaq (beta '))∀xPSNo alpha p, q x
End of Section TaggedSets
L2706
Axiom. (PNoEq_PSNo) We take the following as an axiom:
∀alpha, ordinal alpha∀p : setprop, PNoEq_ alpha (λbeta ⇒ beta PSNo alpha p) p
L2708
Axiom. (SNo_PSNo) We take the following as an axiom:
∀alpha, ordinal alpha∀p : setprop, SNo_ alpha (PSNo alpha p)
L2710
Axiom. (SNo_PSNo_eta_) We take the following as an axiom:
∀alpha x, ordinal alphaSNo_ alpha xx = PSNo alpha (λbeta ⇒ beta x)
L2712
Axiom. (SNo_I) We take the following as an axiom:
∀alpha, ordinal alpha∀z, SNo_ alpha zSNo z
L2714
Axiom. (SNo_E) We take the following as an axiom:
∀z, SNo z∀p : prop, (∀alpha, ordinal alphaSNo_ alpha zp)p
L2716
Axiom. (SNoLev_uniq_Subq) We take the following as an axiom:
∀x alpha beta, ordinal alphaordinal betaSNo_ alpha xSNo_ beta xalpha beta
L2718
Axiom. (SNoLev_uniq) We take the following as an axiom:
∀x alpha beta, ordinal alphaordinal betaSNo_ alpha xSNo_ beta xalpha = beta
L2720
Axiom. (SNoLev_prop) We take the following as an axiom:
∀x, SNo xordinal (SNoLev x) SNo_ (SNoLev x) x
L2722
Axiom. (SNoLev_prop_impred) We take the following as an axiom:
∀x, SNo x∀p : prop, (ordinal (SNoLev x)SNo_ (SNoLev x) xp)p
L2724
Axiom. (SNoLev_ordinal) We take the following as an axiom:
∀x, SNo xordinal (SNoLev x)
L2726
Axiom. (SNoLev_) We take the following as an axiom:
∀x, SNo xSNo_ (SNoLev x) x
L2728
Axiom. (SNo_PSNo_eta) We take the following as an axiom:
∀x, SNo xx = PSNo (SNoLev x) (λbeta ⇒ beta x)
L2730
Axiom. (SNoLev_PSNo) We take the following as an axiom:
∀alpha, ordinal alpha∀p : setprop, SNoLev (PSNo alpha p) = alpha
L2732
Axiom. (SNo_Subq) We take the following as an axiom:
∀x y, SNo xSNo ySNoLev x SNoLev y(∀alphaSNoLev x, alpha x alpha y)x y
L2734
Axiom. (SNoEq_I) We take the following as an axiom:
∀alpha x y, PNoEq_ alpha (λbeta ⇒ beta x) (λbeta ⇒ beta y)SNoEq_ alpha x y
L2736
Axiom. (SNoEq_E) We take the following as an axiom:
∀alpha x y, SNoEq_ alpha x yPNoEq_ alpha (λbeta ⇒ beta x) (λbeta ⇒ beta y)
L2738
Axiom. (SNoEq_E') We take the following as an axiom:
∀alpha x y, ∀p : prop, (PNoEq_ alpha (λbeta ⇒ beta x) (λbeta ⇒ beta y)p)SNoEq_ alpha x yp
L2740
Axiom. (SNoEq_E1) We take the following as an axiom:
∀alpha x y, SNoEq_ alpha x y∀betaalpha, beta xbeta y
L2742
Axiom. (SNoEq_E2) We take the following as an axiom:
∀alpha x y, SNoEq_ alpha x y∀betaalpha, beta ybeta x
L2744
Axiom. (SNoEq_antimon_) We take the following as an axiom:
∀alpha, ordinal alpha∀betaalpha, ∀x y, SNoEq_ alpha x ySNoEq_ beta x y
L2746
Axiom. (SNo_eq) We take the following as an axiom:
∀x y, SNo xSNo ySNoLev x = SNoLev ySNoEq_ (SNoLev x) x yx = y
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
L2750
Axiom. (SNoLtI) We take the following as an axiom:
∀x y, PNoLt (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y)x < y
L2752
Axiom. (SNoLtE) We take the following as an axiom:
∀x y, x < yPNoLt (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y)
L2754
Axiom. (SNoLtE') We take the following as an axiom:
∀x y, ∀p : prop, (PNoLt (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y)p)x < yp
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
L2759
Axiom. (SNoLeI) We take the following as an axiom:
∀x y, PNoLe (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y)x y
L2761
Axiom. (SNoLeE) We take the following as an axiom:
∀x y, x yPNoLe (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y)
L2763
Axiom. (SNoLeE') We take the following as an axiom:
∀x y, ∀p : prop, (PNoLe (SNoLev x) (λbeta ⇒ beta x) (SNoLev y) (λbeta ⇒ beta y)p)x yp
L2765
Axiom. (SNoLtLe) We take the following as an axiom:
∀x y, x < yx y
L2767
Axiom. (SNoLeE_or) We take the following as an axiom:
∀x y, SNo xSNo yx yx < y x = y
L2769
Axiom. (SNoEq_ref_) We take the following as an axiom:
∀alpha x, SNoEq_ alpha x x
L2771
Axiom. (SNoEq_sym_) We take the following as an axiom:
∀alpha x y, SNoEq_ alpha x ySNoEq_ alpha y x
L2773
Axiom. (SNoEq_tra_) We take the following as an axiom:
∀alpha x y z, SNoEq_ alpha x ySNoEq_ alpha y zSNoEq_ alpha x z
L2775
Axiom. (SNoLtE3) We take the following as an axiom:
∀x y, SNo xSNo yx < y∀p : prop, (∀z, SNo zSNoLev z SNoLev x SNoLev ySNoEq_ (SNoLev z) z xSNoEq_ (SNoLev z) z yx < zz < ySNoLev z xSNoLev z yp)(SNoLev x SNoLev ySNoEq_ (SNoLev x) x ySNoLev x yp)(SNoLev y SNoLev xSNoEq_ (SNoLev y) x ySNoLev y xp)p
L2782
Axiom. (SNoLtI2) We take the following as an axiom:
∀x y, SNoLev x SNoLev ySNoEq_ (SNoLev x) x ySNoLev x yx < y
L2788
Axiom. (SNoLtI3) We take the following as an axiom:
∀x y, SNoLev y SNoLev xSNoEq_ (SNoLev y) x ySNoLev y xx < y
L2794
Axiom. (SNoLt_irref) We take the following as an axiom:
∀x, ¬ SNoLt x x
L2796
Axiom. (SNoLt_trichotomy_or) We take the following as an axiom:
∀x y, SNo xSNo yx < y x = y y < x
L2798
Axiom. (SNoLt_trichotomy_or_impred) We take the following as an axiom:
∀x y, SNo xSNo y∀p : prop, (x < yp)(x = yp)(y < xp)p
L2805
Axiom. (SNoLt_tra) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx < yy < zx < z
L2807
Axiom. (SNoLe_ref) We take the following as an axiom:
∀x, SNoLe x x
L2809
Axiom. (SNoLe_antisym) We take the following as an axiom:
∀x y, SNo xSNo yx yy xx = y
L2811
Axiom. (SNoLtLe_tra) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx < yy zx < z
L2813
Axiom. (SNoLeLt_tra) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx yy < zx < z
L2815
Axiom. (SNoLe_tra) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx yy zx z
L2817
Axiom. (SNoLtLe_or) We take the following as an axiom:
∀x y, SNo xSNo yx < y y x
L2819
Axiom. (SNoLtLe_or_impred) We take the following as an axiom:
∀x y, SNo xSNo y∀p : prop, (x < yp)(y xp)p
L2825
Axiom. (SNoLt_PSNo_PNoLt) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPSNo alpha p < PSNo beta qPNoLt alpha p beta q
L2829
Axiom. (PNoLt_SNoLt_PSNo) We take the following as an axiom:
∀alpha beta, ∀p q : setprop, ordinal alphaordinal betaPNoLt alpha p beta qPSNo alpha p < PSNo beta q