Beginning of Section SurrealMul
Notation. We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo.
Notation. We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo.
Primitive. The name
mul_SNo is a term of type
set → set → set.
Notation. We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo.
Axiom. (
mul_SNo_eq) We take the following as an axiom:
∀x, SNo x → ∀y, SNo y → x * y = SNoCut ({(w 0) * y + x * (w 1) + - (w 0) * (w 1)|w ∈ SNoL x ⨯ SNoL y} ∪ {(z 0) * y + x * (z 1) + - (z 0) * (z 1)|z ∈ SNoR x ⨯ SNoR y}) ({(w 0) * y + x * (w 1) + - (w 0) * (w 1)|w ∈ SNoL x ⨯ SNoR y} ∪ {(z 0) * y + x * (z 1) + - (z 0) * (z 1)|z ∈ SNoR x ⨯ SNoL y})
Axiom. (
mul_SNo_eq_2) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀p : prop, (∀L R, (∀u, u ∈ L → (∀q : prop, (∀w0 ∈ SNoL x, ∀w1 ∈ SNoL y, u = w0 * y + x * w1 + - w0 * w1 → q) → (∀z0 ∈ SNoR x, ∀z1 ∈ SNoR y, u = z0 * y + x * z1 + - z0 * z1 → q) → q)) → (∀w0 ∈ SNoL x, ∀w1 ∈ SNoL y, w0 * y + x * w1 + - w0 * w1 ∈ L) → (∀z0 ∈ SNoR x, ∀z1 ∈ SNoR y, z0 * y + x * z1 + - z0 * z1 ∈ L) → (∀u, u ∈ R → (∀q : prop, (∀w0 ∈ SNoL x, ∀z1 ∈ SNoR y, u = w0 * y + x * z1 + - w0 * z1 → q) → (∀z0 ∈ SNoR x, ∀w1 ∈ SNoL y, u = z0 * y + x * w1 + - z0 * w1 → q) → q)) → (∀w0 ∈ SNoL x, ∀z1 ∈ SNoR y, w0 * y + x * z1 + - w0 * z1 ∈ R) → (∀z0 ∈ SNoR x, ∀w1 ∈ SNoL y, z0 * y + x * w1 + - z0 * w1 ∈ R) → x * y = SNoCut L R → p) → p
Axiom. (
mul_SNo_prop_1) We take the following as an axiom:
∀x, SNo x → ∀y, SNo y → ∀p : prop, (SNo (x * y) → (∀u ∈ SNoL x, ∀v ∈ SNoL y, u * y + x * v < x * y + u * v) → (∀u ∈ SNoR x, ∀v ∈ SNoR y, u * y + x * v < x * y + u * v) → (∀u ∈ SNoL x, ∀v ∈ SNoR y, x * y + u * v < u * y + x * v) → (∀u ∈ SNoR x, ∀v ∈ SNoL y, x * y + u * v < u * y + x * v) → p) → p
Axiom. (
SNo_mul_SNo) We take the following as an axiom:
∀x y, SNo x → SNo y → SNo (x * y)
Axiom. (
SNo_mul_SNo_lem) We take the following as an axiom:
∀x y u v, SNo x → SNo y → SNo u → SNo v → SNo (u * y + x * v + - (u * v))
Axiom. (
SNo_mul_SNo_3) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → SNo (x * y * z)
Axiom. (
mul_SNo_eq_3) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀p : prop, (∀L R, SNoCutP L R → (∀u, u ∈ L → (∀q : prop, (∀w0 ∈ SNoL x, ∀w1 ∈ SNoL y, u = w0 * y + x * w1 + - w0 * w1 → q) → (∀z0 ∈ SNoR x, ∀z1 ∈ SNoR y, u = z0 * y + x * z1 + - z0 * z1 → q) → q)) → (∀w0 ∈ SNoL x, ∀w1 ∈ SNoL y, w0 * y + x * w1 + - w0 * w1 ∈ L) → (∀z0 ∈ SNoR x, ∀z1 ∈ SNoR y, z0 * y + x * z1 + - z0 * z1 ∈ L) → (∀u, u ∈ R → (∀q : prop, (∀w0 ∈ SNoL x, ∀z1 ∈ SNoR y, u = w0 * y + x * z1 + - w0 * z1 → q) → (∀z0 ∈ SNoR x, ∀w1 ∈ SNoL y, u = z0 * y + x * w1 + - z0 * w1 → q) → q)) → (∀w0 ∈ SNoL x, ∀z1 ∈ SNoR y, w0 * y + x * z1 + - w0 * z1 ∈ R) → (∀z0 ∈ SNoR x, ∀w1 ∈ SNoL y, z0 * y + x * w1 + - z0 * w1 ∈ R) → x * y = SNoCut L R → p) → p
Axiom. (
mul_SNo_Lt) We take the following as an axiom:
∀x y u v, SNo x → SNo y → SNo u → SNo v → u < x → v < y → u * y + x * v < x * y + u * v
Axiom. (
mul_SNo_Le) We take the following as an axiom:
∀x y u v, SNo x → SNo y → SNo u → SNo v → u ≤ x → v ≤ y → u * y + x * v ≤ x * y + u * v
Axiom. (
mul_SNo_SNoL_interpolate) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀u ∈ SNoL (x * y), (∃v ∈ SNoL x, ∃w ∈ SNoL y, u + v * w ≤ v * y + x * w) ∨ (∃v ∈ SNoR x, ∃w ∈ SNoR y, u + v * w ≤ v * y + x * w)
Axiom. (
mul_SNo_SNoL_interpolate_impred) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀u ∈ SNoL (x * y), ∀p : prop, (∀v ∈ SNoL x, ∀w ∈ SNoL y, u + v * w ≤ v * y + x * w → p) → (∀v ∈ SNoR x, ∀w ∈ SNoR y, u + v * w ≤ v * y + x * w → p) → p
Axiom. (
mul_SNo_SNoR_interpolate) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀u ∈ SNoR (x * y), (∃v ∈ SNoL x, ∃w ∈ SNoR y, v * y + x * w ≤ u + v * w) ∨ (∃v ∈ SNoR x, ∃w ∈ SNoL y, v * y + x * w ≤ u + v * w)
Axiom. (
mul_SNo_SNoR_interpolate_impred) We take the following as an axiom:
∀x y, SNo x → SNo y → ∀u ∈ SNoR (x * y), ∀p : prop, (∀v ∈ SNoL x, ∀w ∈ SNoR y, v * y + x * w ≤ u + v * w → p) → (∀v ∈ SNoR x, ∀w ∈ SNoL y, v * y + x * w ≤ u + v * w → p) → p
Axiom. (
mul_SNo_Subq_lem) We take the following as an axiom:
∀x y X Y Z W, ∀U U', (∀u, u ∈ U → (∀q : prop, (∀w0 ∈ X, ∀w1 ∈ Y, u = w0 * y + x * w1 + - w0 * w1 → q) → (∀z0 ∈ Z, ∀z1 ∈ W, u = z0 * y + x * z1 + - z0 * z1 → q) → q)) → (∀w0 ∈ X, ∀w1 ∈ Y, w0 * y + x * w1 + - w0 * w1 ∈ U') → (∀w0 ∈ Z, ∀w1 ∈ W, w0 * y + x * w1 + - w0 * w1 ∈ U') → U ⊆ U'
Axiom. (
mul_SNo_com) We take the following as an axiom:
∀x y, SNo x → SNo y → x * y = y * x
Axiom. (
mul_SNo_distrR) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → (x + y) * z = x * z + y * z
Axiom. (
mul_SNo_distrL) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → x * (y + z) = x * y + x * z
Beginning of Section mul_SNo_assoc_lems
Variable M : set → set → set
Notation. We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
M.
Hypothesis SNo_M : ∀x y, SNo x → SNo y → SNo (x * y)
Hypothesis DL : ∀x y z, SNo x → SNo y → SNo z → x * (y + z) = x * y + x * z
Hypothesis DR : ∀x y z, SNo x → SNo y → SNo z → (x + y) * z = x * z + y * z
Hypothesis IL : ∀x y, SNo x → SNo y → ∀u ∈ SNoL (x * y), ∀p : prop, (∀v ∈ SNoL x, ∀w ∈ SNoL y, u + v * w ≤ v * y + x * w → p) → (∀v ∈ SNoR x, ∀w ∈ SNoR y, u + v * w ≤ v * y + x * w → p) → p
Hypothesis IR : ∀x y, SNo x → SNo y → ∀u ∈ SNoR (x * y), ∀p : prop, (∀v ∈ SNoL x, ∀w ∈ SNoR y, v * y + x * w ≤ u + v * w → p) → (∀v ∈ SNoR x, ∀w ∈ SNoL y, v * y + x * w ≤ u + v * w → p) → p
Hypothesis M_Lt : ∀x y u v, SNo x → SNo y → SNo u → SNo v → u < x → v < y → u * y + x * v < x * y + u * v
Hypothesis M_Le : ∀x y u v, SNo x → SNo y → SNo u → SNo v → u ≤ x → v ≤ y → u * y + x * v ≤ x * y + u * v
Axiom. (
mul_SNo_assoc_lem1) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → (∀u ∈ SNoS_ (SNoLev x), u * (y * z) = (u * y) * z) → (∀v ∈ SNoS_ (SNoLev y), x * (v * z) = (x * v) * z) → (∀w ∈ SNoS_ (SNoLev z), x * (y * w) = (x * y) * w) → (∀u ∈ SNoS_ (SNoLev x), ∀v ∈ SNoS_ (SNoLev y), u * (v * z) = (u * v) * z) → (∀u ∈ SNoS_ (SNoLev x), ∀w ∈ SNoS_ (SNoLev z), u * (y * w) = (u * y) * w) → (∀v ∈ SNoS_ (SNoLev y), ∀w ∈ SNoS_ (SNoLev z), x * (v * w) = (x * v) * w) → (∀u ∈ SNoS_ (SNoLev x), ∀v ∈ SNoS_ (SNoLev y), ∀w ∈ SNoS_ (SNoLev z), u * (v * w) = (u * v) * w) → ∀L, (∀u ∈ L, ∀q : prop, (∀v ∈ SNoL x, ∀w ∈ SNoL (y * z), u = v * (y * z) + x * w + - v * w → q) → (∀v ∈ SNoR x, ∀w ∈ SNoR (y * z), u = v * (y * z) + x * w + - v * w → q) → q) → ∀u ∈ L, u < (x * y) * z
Axiom. (
mul_SNo_assoc_lem2) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → (∀u ∈ SNoS_ (SNoLev x), u * (y * z) = (u * y) * z) → (∀v ∈ SNoS_ (SNoLev y), x * (v * z) = (x * v) * z) → (∀w ∈ SNoS_ (SNoLev z), x * (y * w) = (x * y) * w) → (∀u ∈ SNoS_ (SNoLev x), ∀v ∈ SNoS_ (SNoLev y), u * (v * z) = (u * v) * z) → (∀u ∈ SNoS_ (SNoLev x), ∀w ∈ SNoS_ (SNoLev z), u * (y * w) = (u * y) * w) → (∀v ∈ SNoS_ (SNoLev y), ∀w ∈ SNoS_ (SNoLev z), x * (v * w) = (x * v) * w) → (∀u ∈ SNoS_ (SNoLev x), ∀v ∈ SNoS_ (SNoLev y), ∀w ∈ SNoS_ (SNoLev z), u * (v * w) = (u * v) * w) → ∀R, (∀u ∈ R, ∀q : prop, (∀v ∈ SNoL x, ∀w ∈ SNoR (y * z), u = v * (y * z) + x * w + - v * w → q) → (∀v ∈ SNoR x, ∀w ∈ SNoL (y * z), u = v * (y * z) + x * w + - v * w → q) → q) → ∀u ∈ R, (x * y) * z < u
End of Section mul_SNo_assoc_lems
Axiom. (
mul_SNo_assoc) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → x * (y * z) = (x * y) * z
Axiom. (
mul_nat_mul_SNo) We take the following as an axiom:
∀n m ∈ ω, mul_nat n m = n * m
Axiom. (
pos_mul_SNo_Lt) We take the following as an axiom:
∀x y z, SNo x → 0 < x → SNo y → SNo z → y < z → x * y < x * z
Axiom. (
nonneg_mul_SNo_Le) We take the following as an axiom:
∀x y z, SNo x → 0 ≤ x → SNo y → SNo z → y ≤ z → x * y ≤ x * z
Axiom. (
neg_mul_SNo_Lt) We take the following as an axiom:
∀x y z, SNo x → x < 0 → SNo y → SNo z → z < y → x * y < x * z
Axiom. (
pos_mul_SNo_Lt') We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → 0 < z → x < y → x * z < y * z
Axiom. (
mul_SNo_Lt1_pos_Lt) We take the following as an axiom:
∀x y, SNo x → SNo y → x < 1 → 0 < y → x * y < y
Axiom. (
nonneg_mul_SNo_Le') We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → 0 ≤ z → x ≤ y → x * z ≤ y * z
Axiom. (
mul_SNo_Le1_nonneg_Le) We take the following as an axiom:
∀x y, SNo x → SNo y → x ≤ 1 → 0 ≤ y → x * y ≤ y
Axiom. (
pos_mul_SNo_Lt2) We take the following as an axiom:
∀x y z w, SNo x → SNo y → SNo z → SNo w → 0 < x → 0 < y → x < z → y < w → x * y < z * w
Axiom. (
nonneg_mul_SNo_Le2) We take the following as an axiom:
∀x y z w, SNo x → SNo y → SNo z → SNo w → 0 ≤ x → 0 ≤ y → x ≤ z → y ≤ w → x * y ≤ z * w
Axiom. (
mul_SNo_pos_pos) We take the following as an axiom:
∀x y, SNo x → SNo y → 0 < x → 0 < y → 0 < x * y
Axiom. (
mul_SNo_pos_neg) We take the following as an axiom:
∀x y, SNo x → SNo y → 0 < x → y < 0 → x * y < 0
Axiom. (
mul_SNo_neg_pos) We take the following as an axiom:
∀x y, SNo x → SNo y → x < 0 → 0 < y → x * y < 0
Axiom. (
mul_SNo_neg_neg) We take the following as an axiom:
∀x y, SNo x → SNo y → x < 0 → y < 0 → 0 < x * y
Axiom. (
mul_SNo_nonneg_nonneg) We take the following as an axiom:
∀x y, SNo x → SNo y → 0 ≤ x → 0 ≤ y → 0 ≤ x * y
Axiom. (
mul_SNo_nonpos_pos) We take the following as an axiom:
∀x y, SNo x → SNo y → x ≤ 0 → 0 < y → x * y ≤ 0
Axiom. (
mul_SNo_nonpos_neg) We take the following as an axiom:
∀x y, SNo x → SNo y → x ≤ 0 → y < 0 → 0 ≤ x * y
Axiom. (
nonpos_mul_SNo_Le) We take the following as an axiom:
∀x y z, SNo x → x ≤ 0 → SNo y → SNo z → z ≤ y → x * y ≤ x * z
Axiom. (
SNo_pos_sqr_uniq) We take the following as an axiom:
∀x y, SNo x → SNo y → 0 < x → 0 < y → x * x = y * y → x = y
Axiom. (
SNo_nonneg_sqr_uniq) We take the following as an axiom:
∀x y, SNo x → SNo y → 0 ≤ x → 0 ≤ y → x * x = y * y → x = y
Axiom. (
SNo_foil) We take the following as an axiom:
∀x y z w, SNo x → SNo y → SNo z → SNo w → (x + y) * (z + w) = x * z + x * w + y * z + y * w
Axiom. (
mul_SNo_com_3_0_1) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → x * y * z = y * x * z
Axiom. (
mul_SNo_com_3b_1_2) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → (x * y) * z = (x * z) * y
Axiom. (
mul_SNo_com_4_inner_mid) We take the following as an axiom:
∀x y z w, SNo x → SNo y → SNo z → SNo w → (x * y) * (z * w) = (x * z) * (y * w)
Axiom. (
mul_SNo_rotate_3_1) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → x * y * z = z * x * y
Axiom. (
mul_SNo_rotate_4_1) We take the following as an axiom:
∀x y z w, SNo x → SNo y → SNo z → SNo w → x * y * z * w = w * x * y * z
Axiom. (
SNo_foil_mm) We take the following as an axiom:
∀x y z w, SNo x → SNo y → SNo z → SNo w → (x + - y) * (z + - w) = x * z + - x * w + - y * z + y * w
Axiom. (
mul_SNo_nonzero_cancel) We take the following as an axiom:
∀x y z, SNo x → x ≠ 0 → SNo y → SNo z → x * y = x * z → y = z
Axiom. (
mul_SNoCutP_lem) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → SNoCutP ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ly} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ry}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ry} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ly}) ∧ x * y = SNoCut ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ly} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ry}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ry} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ly}) ∧ ∀q : prop, (∀LxLy' RxRy' LxRy' RxLy', (∀u ∈ LxLy', ∀p : prop, (∀w ∈ Lx, ∀w' ∈ Ly, SNo w → SNo w' → w < x → w' < y → u = w * y + x * w' + - w * w' → p) → p) → (∀w ∈ Lx, ∀w' ∈ Ly, w * y + x * w' + - w * w' ∈ LxLy') → (∀u ∈ RxRy', ∀p : prop, (∀z ∈ Rx, ∀z' ∈ Ry, SNo z → SNo z' → x < z → y < z' → u = z * y + x * z' + - z * z' → p) → p) → (∀z ∈ Rx, ∀z' ∈ Ry, z * y + x * z' + - z * z' ∈ RxRy') → (∀u ∈ LxRy', ∀p : prop, (∀w ∈ Lx, ∀z ∈ Ry, SNo w → SNo z → w < x → y < z → u = w * y + x * z + - w * z → p) → p) → (∀w ∈ Lx, ∀z ∈ Ry, w * y + x * z + - w * z ∈ LxRy') → (∀u ∈ RxLy', ∀p : prop, (∀z ∈ Rx, ∀w ∈ Ly, SNo z → SNo w → x < z → w < y → u = z * y + x * w + - z * w → p) → p) → (∀z ∈ Rx, ∀w ∈ Ly, z * y + x * w + - z * w ∈ RxLy') → SNoCutP (LxLy' ∪ RxRy') (LxRy' ∪ RxLy') → x * y = SNoCut (LxLy' ∪ RxRy') (LxRy' ∪ RxLy') → q) → q
Axiom. (
mul_SNoCutP_gen) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → SNoCutP ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ly} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ry}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ry} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ly})
Axiom. (
mul_SNoCut_eq) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → x * y = SNoCut ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ly} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ry}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ Lx ⨯ Ry} ∪ {z 0 * y + x * z 1 + - z 0 * z 1|z ∈ Rx ⨯ Ly})
Axiom. (
mul_SNoCut_abs) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx Rx → SNoCutP Ly Ry → x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀q : prop, (∀LxLy' RxRy' LxRy' RxLy', (∀u ∈ LxLy', ∀p : prop, (∀w ∈ Lx, ∀w' ∈ Ly, SNo w → SNo w' → w < x → w' < y → u = w * y + x * w' + - w * w' → p) → p) → (∀w ∈ Lx, ∀w' ∈ Ly, w * y + x * w' + - w * w' ∈ LxLy') → (∀u ∈ RxRy', ∀p : prop, (∀z ∈ Rx, ∀z' ∈ Ry, SNo z → SNo z' → x < z → y < z' → u = z * y + x * z' + - z * z' → p) → p) → (∀z ∈ Rx, ∀z' ∈ Ry, z * y + x * z' + - z * z' ∈ RxRy') → (∀u ∈ LxRy', ∀p : prop, (∀w ∈ Lx, ∀z ∈ Ry, SNo w → SNo z → w < x → y < z → u = w * y + x * z + - w * z → p) → p) → (∀w ∈ Lx, ∀z ∈ Ry, w * y + x * z + - w * z ∈ LxRy') → (∀u ∈ RxLy', ∀p : prop, (∀z ∈ Rx, ∀w ∈ Ly, SNo z → SNo w → x < z → w < y → u = z * y + x * w + - z * w → p) → p) → (∀z ∈ Rx, ∀w ∈ Ly, z * y + x * w + - z * w ∈ RxLy') → SNoCutP (LxLy' ∪ RxRy') (LxRy' ∪ RxLy') → x * y = SNoCut (LxLy' ∪ RxRy') (LxRy' ∪ RxLy') → q) → q
Axiom. (
mul_SNo_SNoCut_SNoL_interpolate) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoL (x * y), (∃v ∈ Lx, ∃w ∈ Ly, u + v * w ≤ v * y + x * w) ∨ (∃v ∈ Rx, ∃w ∈ Ry, u + v * w ≤ v * y + x * w)
Axiom. (
mul_SNo_SNoCut_SNoL_interpolate_impred) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoL (x * y), ∀p : prop, (∀v ∈ Lx, ∀w ∈ Ly, u + v * w ≤ v * y + x * w → p) → (∀v ∈ Rx, ∀w ∈ Ry, u + v * w ≤ v * y + x * w → p) → p
Axiom. (
mul_SNo_SNoCut_SNoR_interpolate) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoR (x * y), (∃v ∈ Lx, ∃w ∈ Ry, v * y + x * w ≤ u + v * w) ∨ (∃v ∈ Rx, ∃w ∈ Ly, v * y + x * w ≤ u + v * w)
Axiom. (
mul_SNo_SNoCut_SNoR_interpolate_impred) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx Rx → SNoCutP Ly Ry → ∀x y, x = SNoCut Lx Rx → y = SNoCut Ly Ry → ∀u ∈ SNoR (x * y), ∀p : prop, (∀v ∈ Lx, ∀w ∈ Ry, v * y + x * w ≤ u + v * w → p) → (∀v ∈ Rx, ∀w ∈ Ly, v * y + x * w ≤ u + v * w → p) → p
End of Section SurrealMul
Beginning of Section SurrealExp
Notation. We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo.
Notation. We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo.
Notation. We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo.
Primitive. The name
exp_SNo_nat is a term of type
set → set → set.
Notation. We use
^ as an infix operator with priority 342 and which associates to the right corresponding to applying term
exp_SNo_nat.
Axiom. (
exp_SNo_nat_S) We take the following as an axiom:
∀x, SNo x → ∀n, nat_p n → x ^ (ordsucc n) = x * x ^ n
Axiom. (
exp_SNo_nat_2) We take the following as an axiom:
∀x, SNo x → x ^ 2 = x * x
Axiom. (
SNo_exp_SNo_nat) We take the following as an axiom:
∀x, SNo x → ∀n, nat_p n → SNo (x ^ n)
Axiom. (
nat_exp_SNo_nat) We take the following as an axiom:
∀x, nat_p x → ∀n, nat_p n → nat_p (x ^ n)
Axiom. (
eps_ordsucc_half_add) We take the following as an axiom:
∀n, nat_p n → eps_ (ordsucc n) + eps_ (ordsucc n) = eps_ n
Axiom. (
double_eps_1) We take the following as an axiom:
∀x y z, SNo x → SNo y → SNo z → x + x = y + z → x = eps_ 1 * (y + z)
Axiom. (
exp_SNo_1_bd) We take the following as an axiom:
∀x, SNo x → 1 ≤ x → ∀n, nat_p n → 1 ≤ x ^ n
Axiom. (
eps_bd_1) We take the following as an axiom:
Axiom. (
exp_SNo_nat_mul_add) We take the following as an axiom:
∀x, SNo x → ∀m, nat_p m → ∀n, nat_p n → x ^ m * x ^ n = x ^ (m + n)
Axiom. (
exp_SNo_nat_pos) We take the following as an axiom:
∀x, SNo x → 0 < x → ∀n, nat_p n → 0 < x ^ n
Axiom. (
SNoS_omega_Lev_equip) We take the following as an axiom:
∀n, nat_p n → equip {x ∈ SNoS_ ω|SNoLev x = n} (2 ^ n)
Axiom. (
SNoS_finite) We take the following as an axiom:
End of Section SurrealExp