Beginning of Section SurrealMul
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Primitive. The name mul_SNo is a term of type setsetset.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Axiom. (mul_SNo_eq) We take the following as an axiom:
∀x, SNo x∀y, SNo yx * y = SNoCut ({(w 0) * y + x * (w 1) + - (w 0) * (w 1)|w ∈ SNoL xSNoL y}{(z 0) * y + x * (z 1) + - (z 0) * (z 1)|z ∈ SNoR xSNoR y}) ({(w 0) * y + x * (w 1) + - (w 0) * (w 1)|w ∈ SNoL xSNoR y}{(z 0) * y + x * (z 1) + - (z 0) * (z 1)|z ∈ SNoR xSNoL y})
Axiom. (mul_SNo_eq_2) We take the following as an axiom:
∀x y, SNo xSNo y∀p : prop, (∀L R, (∀u, u L(∀q : prop, (∀w0SNoL x, ∀w1SNoL y, u = w0 * y + x * w1 + - w0 * w1q)(∀z0SNoR x, ∀z1SNoR y, u = z0 * y + x * z1 + - z0 * z1q)q))(∀w0SNoL x, ∀w1SNoL y, w0 * y + x * w1 + - w0 * w1 L)(∀z0SNoR x, ∀z1SNoR y, z0 * y + x * z1 + - z0 * z1 L)(∀u, u R(∀q : prop, (∀w0SNoL x, ∀z1SNoR y, u = w0 * y + x * z1 + - w0 * z1q)(∀z0SNoR x, ∀w1SNoL y, u = z0 * y + x * w1 + - z0 * w1q)q))(∀w0SNoL x, ∀z1SNoR y, w0 * y + x * z1 + - w0 * z1 R)(∀z0SNoR x, ∀w1SNoL y, z0 * y + x * w1 + - z0 * w1 R)x * y = SNoCut L Rp)p
Axiom. (mul_SNo_prop_1) We take the following as an axiom:
∀x, SNo x∀y, SNo y∀p : prop, (SNo (x * y)(∀uSNoL x, ∀vSNoL y, u * y + x * v < x * y + u * v)(∀uSNoR x, ∀vSNoR y, u * y + x * v < x * y + u * v)(∀uSNoL x, ∀vSNoR y, x * y + u * v < u * y + x * v)(∀uSNoR x, ∀vSNoL y, x * y + u * v < u * y + x * v)p)p
Axiom. (SNo_mul_SNo) We take the following as an axiom:
∀x y, SNo xSNo ySNo (x * y)
Axiom. (SNo_mul_SNo_lem) We take the following as an axiom:
∀x y u v, SNo xSNo ySNo uSNo vSNo (u * y + x * v + - (u * v))
Axiom. (SNo_mul_SNo_3) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zSNo (x * y * z)
Axiom. (mul_SNo_eq_3) We take the following as an axiom:
∀x y, SNo xSNo y∀p : prop, (∀L R, SNoCutP L R(∀u, u L(∀q : prop, (∀w0SNoL x, ∀w1SNoL y, u = w0 * y + x * w1 + - w0 * w1q)(∀z0SNoR x, ∀z1SNoR y, u = z0 * y + x * z1 + - z0 * z1q)q))(∀w0SNoL x, ∀w1SNoL y, w0 * y + x * w1 + - w0 * w1 L)(∀z0SNoR x, ∀z1SNoR y, z0 * y + x * z1 + - z0 * z1 L)(∀u, u R(∀q : prop, (∀w0SNoL x, ∀z1SNoR y, u = w0 * y + x * z1 + - w0 * z1q)(∀z0SNoR x, ∀w1SNoL y, u = z0 * y + x * w1 + - z0 * w1q)q))(∀w0SNoL x, ∀z1SNoR y, w0 * y + x * z1 + - w0 * z1 R)(∀z0SNoR x, ∀w1SNoL y, z0 * y + x * w1 + - z0 * w1 R)x * y = SNoCut L Rp)p
Axiom. (mul_SNo_Lt) We take the following as an axiom:
∀x y u v, SNo xSNo ySNo uSNo vu < xv < yu * y + x * v < x * y + u * v
Axiom. (mul_SNo_Le) We take the following as an axiom:
∀x y u v, SNo xSNo ySNo uSNo vuxvyu * y + x * vx * y + u * v
Axiom. (mul_SNo_SNoL_interpolate) We take the following as an axiom:
∀x y, SNo xSNo y∀uSNoL (x * y), (∃v ∈ SNoL x, ∃w ∈ SNoL y, u + v * wv * y + x * w)(∃v ∈ SNoR x, ∃w ∈ SNoR y, u + v * wv * y + x * w)
Axiom. (mul_SNo_SNoL_interpolate_impred) We take the following as an axiom:
∀x y, SNo xSNo y∀uSNoL (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoL y, u + v * wv * y + x * wp)(∀vSNoR x, ∀wSNoR y, u + v * wv * y + x * wp)p
Axiom. (mul_SNo_SNoR_interpolate) We take the following as an axiom:
∀x y, SNo xSNo y∀uSNoR (x * y), (∃v ∈ SNoL x, ∃w ∈ SNoR y, v * y + x * wu + v * w)(∃v ∈ SNoR x, ∃w ∈ SNoL y, v * y + x * wu + v * w)
Axiom. (mul_SNo_SNoR_interpolate_impred) We take the following as an axiom:
∀x y, SNo xSNo y∀uSNoR (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoR y, v * y + x * wu + v * wp)(∀vSNoR x, ∀wSNoL y, v * y + x * wu + v * wp)p
Axiom. (mul_SNo_Subq_lem) We take the following as an axiom:
∀x y X Y Z W, ∀U U', (∀u, u U(∀q : prop, (∀w0X, ∀w1Y, u = w0 * y + x * w1 + - w0 * w1q)(∀z0Z, ∀z1W, u = z0 * y + x * z1 + - z0 * z1q)q))(∀w0X, ∀w1Y, w0 * y + x * w1 + - w0 * w1 U')(∀w0Z, ∀w1W, w0 * y + x * w1 + - w0 * w1 U')U U'
Axiom. (mul_SNo_zeroR) We take the following as an axiom:
∀x, SNo xx * 0 = 0
Axiom. (mul_SNo_oneR) We take the following as an axiom:
∀x, SNo xx * 1 = x
Axiom. (mul_SNo_com) We take the following as an axiom:
∀x y, SNo xSNo yx * y = y * x
Axiom. (mul_SNo_minus_distrL) We take the following as an axiom:
∀x y, SNo xSNo y(- x) * y = - x * y
Axiom. (mul_SNo_minus_distrR) We take the following as an axiom:
∀x y, SNo xSNo yx * (- y) = - (x * y)
Axiom. (mul_SNo_distrR) We take the following as an axiom:
∀x y z, SNo xSNo ySNo z(x + y) * z = x * z + y * z
Axiom. (mul_SNo_distrL) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx * (y + z) = x * y + x * z
Beginning of Section mul_SNo_assoc_lems
Variable M : setsetset
Hypothesis DL : ∀x y z, SNo xSNo ySNo zx * (y + z) = x * y + x * z
Hypothesis DR : ∀x y z, SNo xSNo ySNo z(x + y) * z = x * z + y * z
Hypothesis IL : ∀x y, SNo xSNo y∀uSNoL (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoL y, u + v * wv * y + x * wp)(∀vSNoR x, ∀wSNoR y, u + v * wv * y + x * wp)p
Hypothesis IR : ∀x y, SNo xSNo y∀uSNoR (x * y), ∀p : prop, (∀vSNoL x, ∀wSNoR y, v * y + x * wu + v * wp)(∀vSNoR x, ∀wSNoL y, v * y + x * wu + v * wp)p
Hypothesis M_Lt : ∀x y u v, SNo xSNo ySNo uSNo vu < xv < yu * y + x * v < x * y + u * v
Hypothesis M_Le : ∀x y u v, SNo xSNo ySNo uSNo vuxvyu * y + x * vx * y + u * v
Axiom. (mul_SNo_assoc_lem1) We take the following as an axiom:
∀x y z, SNo xSNo ySNo z(∀uSNoS_ (SNoLev x), u * (y * z) = (u * y) * z)(∀vSNoS_ (SNoLev y), x * (v * z) = (x * v) * z)(∀wSNoS_ (SNoLev z), x * (y * w) = (x * y) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), u * (v * z) = (u * v) * z)(∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), u * (y * w) = (u * y) * w)(∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), x * (v * w) = (x * v) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), u * (v * w) = (u * v) * w)∀L, (∀uL, ∀q : prop, (∀vSNoL x, ∀wSNoL (y * z), u = v * (y * z) + x * w + - v * wq)(∀vSNoR x, ∀wSNoR (y * z), u = v * (y * z) + x * w + - v * wq)q)∀uL, u < (x * y) * z
Axiom. (mul_SNo_assoc_lem2) We take the following as an axiom:
∀x y z, SNo xSNo ySNo z(∀uSNoS_ (SNoLev x), u * (y * z) = (u * y) * z)(∀vSNoS_ (SNoLev y), x * (v * z) = (x * v) * z)(∀wSNoS_ (SNoLev z), x * (y * w) = (x * y) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), u * (v * z) = (u * v) * z)(∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), u * (y * w) = (u * y) * w)(∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), x * (v * w) = (x * v) * w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), u * (v * w) = (u * v) * w)∀R, (∀uR, ∀q : prop, (∀vSNoL x, ∀wSNoR (y * z), u = v * (y * z) + x * w + - v * wq)(∀vSNoR x, ∀wSNoL (y * z), u = v * (y * z) + x * w + - v * wq)q)∀uR, (x * y) * z < u
End of Section mul_SNo_assoc_lems
Axiom. (mul_SNo_assoc) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx * (y * z) = (x * y) * z
Axiom. (mul_nat_mul_SNo) We take the following as an axiom:
∀n mω, mul_nat n m = n * m
Axiom. (mul_SNo_In_omega) We take the following as an axiom:
∀n mω, n * m ω
Axiom. (mul_SNo_zeroL) We take the following as an axiom:
∀x, SNo x0 * x = 0
Axiom. (mul_SNo_oneL) We take the following as an axiom:
∀x, SNo x1 * x = x
Axiom. (SNo_gt2_double_ltS) We take the following as an axiom:
∀x, SNo x1 < xx + 1 < 2 * x
Axiom. (pos_mul_SNo_Lt) We take the following as an axiom:
∀x y z, SNo x0 < xSNo ySNo zy < zx * y < x * z
Axiom. (nonneg_mul_SNo_Le) We take the following as an axiom:
∀x y z, SNo x0xSNo ySNo zyzx * yx * z
Axiom. (neg_mul_SNo_Lt) We take the following as an axiom:
∀x y z, SNo xx < 0SNo ySNo zz < yx * y < x * z
Axiom. (pos_mul_SNo_Lt') We take the following as an axiom:
∀x y z, SNo xSNo ySNo z0 < zx < yx * z < y * z
Axiom. (mul_SNo_Lt1_pos_Lt) We take the following as an axiom:
∀x y, SNo xSNo yx < 10 < yx * y < y
Axiom. (nonneg_mul_SNo_Le') We take the following as an axiom:
∀x y z, SNo xSNo ySNo z0zxyx * zy * z
Axiom. (mul_SNo_Le1_nonneg_Le) We take the following as an axiom:
∀x y, SNo xSNo yx10yx * yy
Axiom. (pos_mul_SNo_Lt2) We take the following as an axiom:
∀x y z w, SNo xSNo ySNo zSNo w0 < x0 < yx < zy < wx * y < z * w
Axiom. (nonneg_mul_SNo_Le2) We take the following as an axiom:
∀x y z w, SNo xSNo ySNo zSNo w0x0yxzywx * yz * w
Axiom. (mul_SNo_pos_pos) We take the following as an axiom:
∀x y, SNo xSNo y0 < x0 < y0 < x * y
Axiom. (mul_SNo_pos_neg) We take the following as an axiom:
∀x y, SNo xSNo y0 < xy < 0x * y < 0
Axiom. (mul_SNo_neg_pos) We take the following as an axiom:
∀x y, SNo xSNo yx < 00 < yx * y < 0
Axiom. (mul_SNo_neg_neg) We take the following as an axiom:
∀x y, SNo xSNo yx < 0y < 00 < x * y
Axiom. (mul_SNo_nonneg_nonneg) We take the following as an axiom:
∀x y, SNo xSNo y0x0y0x * y
Axiom. (mul_SNo_nonpos_pos) We take the following as an axiom:
∀x y, SNo xSNo yx00 < yx * y0
Axiom. (mul_SNo_nonpos_neg) We take the following as an axiom:
∀x y, SNo xSNo yx0y < 00x * y
Axiom. (nonpos_mul_SNo_Le) We take the following as an axiom:
∀x y z, SNo xx0SNo ySNo zzyx * yx * z
Axiom. (SNo_sqr_nonneg) We take the following as an axiom:
∀x, SNo x0x * x
Axiom. (SNo_zero_or_sqr_pos) We take the following as an axiom:
∀x, SNo xx = 00 < x * x
Axiom. (SNo_pos_sqr_uniq) We take the following as an axiom:
∀x y, SNo xSNo y0 < x0 < yx * x = y * yx = y
Axiom. (SNo_nonneg_sqr_uniq) We take the following as an axiom:
∀x y, SNo xSNo y0x0yx * x = y * yx = y
Axiom. (SNo_foil) We take the following as an axiom:
∀x y z w, SNo xSNo ySNo zSNo w(x + y) * (z + w) = x * z + x * w + y * z + y * w
Axiom. (mul_SNo_minus_minus) We take the following as an axiom:
∀x y, SNo xSNo y(- x) * (- y) = x * y
Axiom. (mul_SNo_com_3_0_1) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx * y * z = y * x * z
Axiom. (mul_SNo_com_3b_1_2) We take the following as an axiom:
∀x y z, SNo xSNo ySNo z(x * y) * z = (x * z) * y
Axiom. (mul_SNo_com_4_inner_mid) We take the following as an axiom:
∀x y z w, SNo xSNo ySNo zSNo w(x * y) * (z * w) = (x * z) * (y * w)
Axiom. (mul_SNo_rotate_3_1) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx * y * z = z * x * y
Axiom. (mul_SNo_rotate_4_1) We take the following as an axiom:
∀x y z w, SNo xSNo ySNo zSNo wx * y * z * w = w * x * y * z
Axiom. (SNo_foil_mm) We take the following as an axiom:
∀x y z w, SNo xSNo ySNo zSNo w(x + - y) * (z + - w) = x * z + - x * w + - y * z + y * w
Axiom. (mul_SNo_nonzero_cancel) We take the following as an axiom:
∀x y z, SNo xx0SNo ySNo zx * y = x * zy = z
Axiom. (mul_SNoCutP_lem) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx RxSNoCutP Ly Ryx = SNoCut Lx Rxy = SNoCut Ly RySNoCutP ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxLy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxRy}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxRy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxLy})x * y = SNoCut ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxLy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxRy}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxRy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxLy})∀q : prop, (∀LxLy' RxRy' LxRy' RxLy', (∀uLxLy', ∀p : prop, (∀wLx, ∀w'Ly, SNo wSNo w'w < xw' < yu = w * y + x * w' + - w * w'p)p)(∀wLx, ∀w'Ly, w * y + x * w' + - w * w' LxLy')(∀uRxRy', ∀p : prop, (∀zRx, ∀z'Ry, SNo zSNo z'x < zy < z'u = z * y + x * z' + - z * z'p)p)(∀zRx, ∀z'Ry, z * y + x * z' + - z * z' RxRy')(∀uLxRy', ∀p : prop, (∀wLx, ∀zRy, SNo wSNo zw < xy < zu = w * y + x * z + - w * zp)p)(∀wLx, ∀zRy, w * y + x * z + - w * z LxRy')(∀uRxLy', ∀p : prop, (∀zRx, ∀wLy, SNo zSNo wx < zw < yu = z * y + x * w + - z * wp)p)(∀zRx, ∀wLy, z * y + x * w + - z * w RxLy')SNoCutP (LxLy'RxRy') (LxRy'RxLy')x * y = SNoCut (LxLy'RxRy') (LxRy'RxLy')q)q
Axiom. (mul_SNoCutP_gen) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx RxSNoCutP Ly Ryx = SNoCut Lx Rxy = SNoCut Ly RySNoCutP ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxLy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxRy}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxRy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxLy})
Axiom. (mul_SNoCut_eq) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx RxSNoCutP Ly Ryx = SNoCut Lx Rxy = SNoCut Ly Ryx * y = SNoCut ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxLy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxRy}) ({w 0 * y + x * w 1 + - w 0 * w 1|w ∈ LxRy}{z 0 * y + x * z 1 + - z 0 * z 1|z ∈ RxLy})
Axiom. (mul_SNoCut_abs) We take the following as an axiom:
∀Lx Rx Ly Ry x y, SNoCutP Lx RxSNoCutP Ly Ryx = SNoCut Lx Rxy = SNoCut Ly Ry∀q : prop, (∀LxLy' RxRy' LxRy' RxLy', (∀uLxLy', ∀p : prop, (∀wLx, ∀w'Ly, SNo wSNo w'w < xw' < yu = w * y + x * w' + - w * w'p)p)(∀wLx, ∀w'Ly, w * y + x * w' + - w * w' LxLy')(∀uRxRy', ∀p : prop, (∀zRx, ∀z'Ry, SNo zSNo z'x < zy < z'u = z * y + x * z' + - z * z'p)p)(∀zRx, ∀z'Ry, z * y + x * z' + - z * z' RxRy')(∀uLxRy', ∀p : prop, (∀wLx, ∀zRy, SNo wSNo zw < xy < zu = w * y + x * z + - w * zp)p)(∀wLx, ∀zRy, w * y + x * z + - w * z LxRy')(∀uRxLy', ∀p : prop, (∀zRx, ∀wLy, SNo zSNo wx < zw < yu = z * y + x * w + - z * wp)p)(∀zRx, ∀wLy, z * y + x * w + - z * w RxLy')SNoCutP (LxLy'RxRy') (LxRy'RxLy')x * y = SNoCut (LxLy'RxRy') (LxRy'RxLy')q)q
Axiom. (mul_SNo_SNoCut_SNoL_interpolate) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoL (x * y), (∃v ∈ Lx, ∃w ∈ Ly, u + v * wv * y + x * w)(∃v ∈ Rx, ∃w ∈ Ry, u + v * wv * y + x * w)
Axiom. (mul_SNo_SNoCut_SNoL_interpolate_impred) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoL (x * y), ∀p : prop, (∀vLx, ∀wLy, u + v * wv * y + x * wp)(∀vRx, ∀wRy, u + v * wv * y + x * wp)p
Axiom. (mul_SNo_SNoCut_SNoR_interpolate) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoR (x * y), (∃v ∈ Lx, ∃w ∈ Ry, v * y + x * wu + v * w)(∃v ∈ Rx, ∃w ∈ Ly, v * y + x * wu + v * w)
Axiom. (mul_SNo_SNoCut_SNoR_interpolate_impred) We take the following as an axiom:
∀Lx Rx Ly Ry, SNoCutP Lx RxSNoCutP Ly Ry∀x y, x = SNoCut Lx Rxy = SNoCut Ly Ry∀uSNoR (x * y), ∀p : prop, (∀vLx, ∀wRy, v * y + x * wu + v * wp)(∀vRx, ∀wLy, v * y + x * wu + v * wp)p
End of Section SurrealMul
Beginning of Section SurrealExp
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Primitive. The name exp_SNo_nat is a term of type setsetset.
Notation. We use ^ as an infix operator with priority 342 and which associates to the right corresponding to applying term exp_SNo_nat.
Axiom. (exp_SNo_nat_0) We take the following as an axiom:
∀x, SNo xx ^ 0 = 1
Axiom. (exp_SNo_nat_S) We take the following as an axiom:
∀x, SNo x∀n, nat_p nx ^ (ordsucc n) = x * x ^ n
Axiom. (exp_SNo_nat_1) We take the following as an axiom:
∀x, SNo xx ^ 1 = x
Axiom. (exp_SNo_nat_2) We take the following as an axiom:
∀x, SNo xx ^ 2 = x * x
Axiom. (SNo_sqr_nonneg') We take the following as an axiom:
∀x, SNo x0x ^ 2
Axiom. (SNo_zero_or_sqr_pos') We take the following as an axiom:
∀x, SNo xx = 00 < x ^ 2
Axiom. (SNo_exp_SNo_nat) We take the following as an axiom:
∀x, SNo x∀n, nat_p nSNo (x ^ n)
Axiom. (nat_exp_SNo_nat) We take the following as an axiom:
∀x, nat_p x∀n, nat_p nnat_p (x ^ n)
Axiom. (eps_ordsucc_half_add) We take the following as an axiom:
∀n, nat_p neps_ (ordsucc n) + eps_ (ordsucc n) = eps_ n
Axiom. (eps_1_half_eq1) We take the following as an axiom:
eps_ 1 + eps_ 1 = 1
Axiom. (eps_1_half_eq2) We take the following as an axiom:
2 * eps_ 1 = 1
Axiom. (double_eps_1) We take the following as an axiom:
∀x y z, SNo xSNo ySNo zx + x = y + zx = eps_ 1 * (y + z)
Axiom. (exp_SNo_1_bd) We take the following as an axiom:
∀x, SNo x1x∀n, nat_p n1x ^ n
Axiom. (exp_SNo_2_bd) We take the following as an axiom:
∀n, nat_p nn < 2 ^ n
Axiom. (mul_SNo_eps_power_2) We take the following as an axiom:
∀n, nat_p neps_ n * 2 ^ n = 1
Axiom. (eps_bd_1) We take the following as an axiom:
∀nω, eps_ n1
Axiom. (mul_SNo_eps_power_2') We take the following as an axiom:
∀n, nat_p n2 ^ n * eps_ n = 1
Axiom. (exp_SNo_nat_mul_add) We take the following as an axiom:
∀x, SNo x∀m, nat_p m∀n, nat_p nx ^ m * x ^ n = x ^ (m + n)
Axiom. (exp_SNo_nat_mul_add') We take the following as an axiom:
∀x, SNo x∀m nω, x ^ m * x ^ n = x ^ (m + n)
Axiom. (exp_SNo_nat_pos) We take the following as an axiom:
∀x, SNo x0 < x∀n, nat_p n0 < x ^ n
Axiom. (mul_SNo_eps_eps_add_SNo) We take the following as an axiom:
∀m nω, eps_ m * eps_ n = eps_ (m + n)
Axiom. (SNoS_omega_Lev_equip) We take the following as an axiom:
∀n, nat_p nequip {x ∈ SNoS_ ω|SNoLev x = n} (2 ^ n)
Axiom. (SNoS_finite) We take the following as an axiom:
∀nω, finite (SNoS_ n)
Axiom. (SNoS_omega_SNoL_finite) We take the following as an axiom:
∀xSNoS_ ω, finite (SNoL x)
Axiom. (SNoS_omega_SNoR_finite) We take the following as an axiom:
∀xSNoS_ ω, finite (SNoR x)
End of Section SurrealExp