Beginning of Section SurrealMinus
Primitive. The name minus_SNo is a term of type setset.
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Axiom. (minus_SNo_eq) We take the following as an axiom:
∀x, SNo x- x = SNoCut {- z|z ∈ SNoR x} {- w|w ∈ SNoL x}
Axiom. (minus_SNo_prop1) We take the following as an axiom:
∀x, SNo xSNo (- x)(∀uSNoL x, - x < - u)(∀uSNoR x, - u < - x)SNoCutP {- z|z ∈ SNoR x} {- w|w ∈ SNoL x}
Axiom. (SNo_minus_SNo) We take the following as an axiom:
∀x, SNo xSNo (- x)
Axiom. (minus_SNo_Lt_contra) We take the following as an axiom:
∀x y, SNo xSNo yx < y- y < - x
Axiom. (minus_SNo_Le_contra) We take the following as an axiom:
∀x y, SNo xSNo yx y- y - x
Axiom. (minus_SNo_SNoCutP) We take the following as an axiom:
∀x, SNo xSNoCutP {- z|z ∈ SNoR x} {- w|w ∈ SNoL x}
Axiom. (minus_SNo_SNoCutP_gen) We take the following as an axiom:
∀L R, SNoCutP L RSNoCutP {- z|z ∈ R} {- w|w ∈ L}
Axiom. (minus_SNo_Lev_lem1) We take the following as an axiom:
∀alpha, ordinal alpha∀xSNoS_ alpha, SNoLev (- x) SNoLev x
Axiom. (minus_SNo_Lev_lem2) We take the following as an axiom:
∀x, SNo xSNoLev (- x) SNoLev x
Axiom. (minus_SNo_invol) We take the following as an axiom:
∀x, SNo x- - x = x
Axiom. (minus_SNo_Lev) We take the following as an axiom:
∀x, SNo xSNoLev (- x) = SNoLev x
Axiom. (minus_SNo_SNo_) We take the following as an axiom:
∀alpha, ordinal alpha∀x, SNo_ alpha xSNo_ alpha (- x)
Axiom. (minus_SNo_SNoS_) We take the following as an axiom:
∀alpha, ordinal alpha∀x, x SNoS_ alpha- x SNoS_ alpha
Axiom. (minus_SNoCut_eq_lem) We take the following as an axiom:
∀v, SNo v∀L R, SNoCutP L Rv = SNoCut L R- v = SNoCut {- z|z ∈ R} {- w|w ∈ L}
Axiom. (minus_SNoCut_eq) We take the following as an axiom:
∀L R, SNoCutP L R- SNoCut L R = SNoCut {- z|z ∈ R} {- w|w ∈ L}
Axiom. (minus_SNo_Lt_contra1) We take the following as an axiom:
∀x y, SNo xSNo y- x < y- y < x
Axiom. (minus_SNo_Lt_contra2) We take the following as an axiom:
∀x y, SNo xSNo yx < - yy < - x
Axiom. (mordinal_SNoLev_min_2) We take the following as an axiom:
∀alpha, ordinal alpha∀z, SNo zSNoLev z ordsucc alpha- alpha z
Axiom. (minus_SNo_SNoS_omega) We take the following as an axiom:
∀xSNoS_ ω, - x SNoS_ ω
Axiom. (SNoL_minus_SNoR) We take the following as an axiom:
∀x, SNo xSNoL (- x) = {- w|w ∈ SNoR x}
End of Section SurrealMinus