We will prove compact_space unit_interval unit_interval_topology.
We will prove topology_on unit_interval unit_interval_topology ∀Fam : set, open_cover_of unit_interval unit_interval_topology Famhas_finite_subcover unit_interval unit_interval_topology Fam.
Apply andI to the current goal.
An exact proof term for the current goal is unit_interval_topology_on.
Let Fam be given.
Assume Hcover: open_cover_of unit_interval unit_interval_topology Fam.
We will prove has_finite_subcover unit_interval unit_interval_topology Fam.
An exact proof term for the current goal is (unit_interval_has_finite_subcover Fam Hcover).