Let X, Tx, fn and f be given.
Assume HTx: topology_on X Tx.
Assume Hfn: function_on fn ω (function_space X R).
Assume Hf: function_on f X R.
Assume Hcont: ∀n : set, n ωcontinuous_map X Tx R R_standard_topology (apply_fun fn n).
Assume Hunif: uniform_limit_metric X R R_bounded_metric fn f.
We will prove continuous_map X Tx R R_standard_topology f.
rewrite the current goal using metric_topology_R_bounded_metric_eq_R_standard_topology_early (from right to left).
We prove the intermediate claim Hcont2: ∀n : set, n ωcontinuous_map X Tx R (metric_topology R R_bounded_metric) (apply_fun fn n).
Let n be given.
Assume HnO: n ω.
We will prove continuous_map X Tx R (metric_topology R R_bounded_metric) (apply_fun fn n).
rewrite the current goal using metric_topology_R_bounded_metric_eq_R_standard_topology_early (from left to right).
An exact proof term for the current goal is (Hcont n HnO).
An exact proof term for the current goal is (uniform_limit_of_continuous_to_metric_is_continuous X Tx R R_bounded_metric fn f HTx R_bounded_metric_is_metric_on_early Hfn Hf Hcont2 Hunif).