Let X, Y, d, fn and f be given.
Assume Hunif: uniform_limit_metric X Y d fn f.
We will prove pointwise_limit_metric X Y d fn f.
Let x be given.
Assume HxX: x X.
Let eps be given.
Assume HepsR: eps R.
Assume HepsPos: Rlt 0 eps.
Apply (Hunif eps HepsR HepsPos) to the current goal.
Let N be given.
Assume HNpair: N ω ∀n : set, n ωN n∀x0 : set, x0 XRlt (apply_fun d (apply_fun (apply_fun fn n) x0,apply_fun f x0)) eps.
We use N to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (andEL (N ω) (∀n : set, n ωN n∀x0 : set, x0 XRlt (apply_fun d (apply_fun (apply_fun fn n) x0,apply_fun f x0)) eps) HNpair).
Let n be given.
Assume HnO: n ω.
Assume HNn: N n.
We will prove Rlt (apply_fun d (apply_fun (apply_fun fn n) x,apply_fun f x)) eps.
We prove the intermediate claim Htail: ∀n0 : set, n0 ωN n0∀x0 : set, x0 XRlt (apply_fun d (apply_fun (apply_fun fn n0) x0,apply_fun f x0)) eps.
An exact proof term for the current goal is (andER (N ω) (∀n0 : set, n0 ωN n0∀x0 : set, x0 XRlt (apply_fun d (apply_fun (apply_fun fn n0) x0,apply_fun f x0)) eps) HNpair).
An exact proof term for the current goal is (Htail n HnO HNn x HxX).