Let X, dX, Y, dY, f_seq and f be given.
Assume H: uniform_convergence_functions X dX Y dY f_seq f.
We prove the intermediate claim HABCDE: ((((metric_on X dX metric_on Y dY) function_on f_seq ω (function_space X Y)) function_on f X Y) (∀n : set, n ωfunction_on (apply_fun f_seq n) X Y)).
An exact proof term for the current goal is (andEL ((((metric_on X dX metric_on Y dY) function_on f_seq ω (function_space X Y)) function_on f X Y) (∀n : set, n ωfunction_on (apply_fun f_seq n) X Y)) (∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀n : set, n ωN n∀x : set, x XRlt (apply_fun dY (apply_fun (apply_fun f_seq n) x,apply_fun f x)) eps) H).
We prove the intermediate claim HABCD: (((metric_on X dX metric_on Y dY) function_on f_seq ω (function_space X Y)) function_on f X Y).
An exact proof term for the current goal is (andEL (((metric_on X dX metric_on Y dY) function_on f_seq ω (function_space X Y)) function_on f X Y) (∀n : set, n ωfunction_on (apply_fun f_seq n) X Y) HABCDE).
An exact proof term for the current goal is (andER (metric_on X dX metric_on Y dY) (function_on f_seq ω (function_space X Y)) (andEL (metric_on X dX metric_on Y dY function_on f_seq ω (function_space X Y)) (function_on f X Y) HABCD)).