Let X, Tx and fn be given.
Assume HTx: topology_on X Tx.
Assume Hfn: function_on fn ω (function_space X R).
Assume Hcont: ∀n : set, n ωcontinuous_map X Tx R R_standard_topology (apply_fun fn n).
Assume Huc: uniform_cauchy_metric X R R_bounded_metric fn.
We prove the intermediate claim Hexlim: ∃f : set, function_on f X R uniform_limit_metric X R R_bounded_metric fn f.
An exact proof term for the current goal is (uniform_cauchy_metric_complete_imp_uniform_limit_stub X R R_bounded_metric fn R_bounded_metric_complete_early Hfn Huc).
Apply Hexlim to the current goal.
Let f be given.
Assume Hfpack: function_on f X R uniform_limit_metric X R R_bounded_metric fn f.
We use f to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is Hfpack.
An exact proof term for the current goal is (uniform_limit_of_continuous_to_R_standard_topology X Tx fn f HTx Hfn (andEL (function_on f X R) (uniform_limit_metric X R R_bounded_metric fn f) Hfpack) Hcont (andER (function_on f X R) (uniform_limit_metric X R R_bounded_metric fn f) Hfpack)).