Let A, B, Y, f and g be given.
Assume Hdisj: A B = Empty.
Assume Hdomf: graph_domain_subset f A.
Assume Hdomg: graph_domain_subset g B.
Assume Htotf: total_function_on f A Y.
Assume Htotg: total_function_on g B Y.
Assume Hfunf: functional_graph f.
Assume Hfung: functional_graph g.
We will prove function_on (f g) (A B) Y ∀x : set, x (A B)∃y : set, y Y (x,y) (f g).
Apply andI to the current goal.
An exact proof term for the current goal is (function_union_on_disjoint_total_functional A B Y f g Hdisj Hdomf Hdomg Htotf Htotg Hfunf Hfung).
Let x be given.
Assume Hx: x (A B).
We will prove ∃y : set, y Y (x,y) (f g).
Apply (binunionE A B x Hx) to the current goal.
Assume HxA: x A.
Apply (total_function_on_totality f A Y Htotf x HxA) to the current goal.
Let y be given.
Assume Hy: y Y (x,y) f.
We use y to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (andEL (y Y) ((x,y) f) Hy).
An exact proof term for the current goal is (binunionI1 f g (x,y) (andER (y Y) ((x,y) f) Hy)).
Assume HxB: x B.
Apply (total_function_on_totality g B Y Htotg x HxB) to the current goal.
Let y be given.
Assume Hy: y Y (x,y) g.
We use y to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (andEL (y Y) ((x,y) g) Hy).
An exact proof term for the current goal is (binunionI2 f g (x,y) (andER (y Y) ((x,y) g) Hy)).