Let f, X, Y and x be given.
We prove the intermediate
claim Hex:
∃y : set, y ∈ Y ∧ (x,y) ∈ f.
Set y0 to be the term
Eps_i (λy : set ⇒ y ∈ Y ∧ (x,y) ∈ f).
We prove the intermediate
claim Hy0:
y0 ∈ Y ∧ (x,y0) ∈ f.
An
exact proof term for the current goal is
(Eps_i_ex (λy : set ⇒ y ∈ Y ∧ (x,y) ∈ f) Hex).
We prove the intermediate
claim Hxy0:
(x,y0) ∈ f.
An
exact proof term for the current goal is
(andER (y0 ∈ Y) ((x,y0) ∈ f) Hy0).
An
exact proof term for the current goal is
(Eps_i_ax (λy : set ⇒ (x,y) ∈ f) y0 Hxy0).
∎