Let X, T and UFam be given.
Assume HTx: topology_on X T.
Assume HUFam: UFam T.
We will prove UFam T.
We prove the intermediate claim H1: (((T 𝒫 X Empty T) X T) (∀UFam0𝒫 T, UFam0 T)) (∀UT, ∀VT, U V T).
An exact proof term for the current goal is HTx.
We prove the intermediate claim H2: ((T 𝒫 X Empty T) X T) (∀UFam0𝒫 T, UFam0 T).
An exact proof term for the current goal is (andEL (((T 𝒫 X Empty T) X T) (∀UFam0𝒫 T, UFam0 T)) (∀UT, ∀VT, U V T) H1).
We prove the intermediate claim HUnionAxiom: ∀UFam0𝒫 T, UFam0 T.
An exact proof term for the current goal is (andER (((T 𝒫 X Empty T) X T)) (∀UFam0𝒫 T, UFam0 T) H2).
We prove the intermediate claim HUFamPower: UFam 𝒫 T.
An exact proof term for the current goal is (PowerI T UFam HUFam).
An exact proof term for the current goal is (HUnionAxiom UFam HUFamPower).