Let X, T and UFam be given.
We will
prove ⋃ UFam ∈ T.
We prove the intermediate
claim H1:
(((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T) ∧ (∀UFam0 ∈ 𝒫 T, ⋃ UFam0 ∈ T)) ∧ (∀U ∈ T, ∀V ∈ T, U ∩ V ∈ T).
An exact proof term for the current goal is HTx.
We prove the intermediate
claim H2:
((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T) ∧ (∀UFam0 ∈ 𝒫 T, ⋃ UFam0 ∈ T).
An
exact proof term for the current goal is
(andEL (((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T) ∧ (∀UFam0 ∈ 𝒫 T, ⋃ UFam0 ∈ T)) (∀U ∈ T, ∀V ∈ T, U ∩ V ∈ T) H1).
We prove the intermediate
claim HUnionAxiom:
∀UFam0 ∈ 𝒫 T, ⋃ UFam0 ∈ T.
An
exact proof term for the current goal is
(andER (((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T)) (∀UFam0 ∈ 𝒫 T, ⋃ UFam0 ∈ T) H2).
We prove the intermediate
claim HUFamPower:
UFam ∈ 𝒫 T.
An
exact proof term for the current goal is
(PowerI T UFam HUFam).
An exact proof term for the current goal is (HUnionAxiom UFam HUFamPower).
∎