Let X and T be given.
Assume HTx: topology_on X T.
We will prove T 𝒫 X.
We prove the intermediate claim H1: (((T 𝒫 X Empty T) X T) (∀UFam𝒫 T, UFam T)) (∀UT, ∀VT, U V T).
An exact proof term for the current goal is HTx.
We prove the intermediate claim H2: ((T 𝒫 X Empty T) X T) (∀UFam𝒫 T, UFam T).
An exact proof term for the current goal is (andEL (((T 𝒫 X Empty T) X T) (∀UFam𝒫 T, UFam T)) (∀UT, ∀VT, U V T) H1).
We prove the intermediate claim H3: (T 𝒫 X Empty T) X T.
An exact proof term for the current goal is (andEL ((T 𝒫 X Empty T) X T) (∀UFam𝒫 T, UFam T) H2).
We prove the intermediate claim H4: T 𝒫 X Empty T.
An exact proof term for the current goal is (andEL (T 𝒫 X Empty T) (X T) H3).
An exact proof term for the current goal is (andEL (T 𝒫 X) (Empty T) H4).