Let X and T be given.
We prove the intermediate
claim H1:
(((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T) ∧ (∀UFam ∈ 𝒫 T, ⋃ UFam ∈ T)) ∧ (∀U ∈ T, ∀V ∈ T, U ∩ V ∈ T).
An exact proof term for the current goal is HTx.
We prove the intermediate
claim H2:
((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T) ∧ (∀UFam ∈ 𝒫 T, ⋃ UFam ∈ T).
An
exact proof term for the current goal is
(andEL (((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T) ∧ (∀UFam ∈ 𝒫 T, ⋃ UFam ∈ T)) (∀U ∈ T, ∀V ∈ T, U ∩ V ∈ T) H1).
We prove the intermediate
claim H3:
(T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T.
An
exact proof term for the current goal is
(andEL ((T ⊆ 𝒫 X ∧ Empty ∈ T) ∧ X ∈ T) (∀UFam ∈ 𝒫 T, ⋃ UFam ∈ T) H2).
We prove the intermediate
claim H4:
T ⊆ 𝒫 X ∧ Empty ∈ T.
An
exact proof term for the current goal is
(andEL (T ⊆ 𝒫 X ∧ Empty ∈ T) (X ∈ T) H3).
An
exact proof term for the current goal is
(andER (T ⊆ 𝒫 X) (Empty ∈ T) H4).
∎