Let X, Tx and U be given.
Assume HTx: topology_on X Tx.
Assume HUSubX: U X.
Assume Hnbhd: ∀x : set, x U∃V : set, V Tx x V V U.
Set Fam to be the term {VTx|V U}.
We prove the intermediate claim HFamSub: Fam Tx.
Let V be given.
Assume HV: V Fam.
An exact proof term for the current goal is (SepE1 Tx (λW : setW U) V HV).
We prove the intermediate claim HFamPow: Fam 𝒫 Tx.
An exact proof term for the current goal is (PowerI Tx Fam HFamSub).
We prove the intermediate claim HUnionFamIn: Fam Tx.
An exact proof term for the current goal is (topology_union_closed_pow X Tx Fam HTx HFamPow).
We prove the intermediate claim HUeq: U = Fam.
Apply set_ext to the current goal.
Let x be given.
Assume HxU: x U.
We prove the intermediate claim HexV: ∃V : set, V Tx x V V U.
An exact proof term for the current goal is (Hnbhd x HxU).
Apply HexV to the current goal.
Let V be given.
Assume HVpack: V Tx x V V U.
We prove the intermediate claim HVTx_x: V Tx x V.
An exact proof term for the current goal is (andEL (V Tx x V) (V U) HVpack).
We prove the intermediate claim HVTx: V Tx.
An exact proof term for the current goal is (andEL (V Tx) (x V) HVTx_x).
We prove the intermediate claim HxV: x V.
An exact proof term for the current goal is (andER (V Tx) (x V) HVTx_x).
We prove the intermediate claim HVSubU: V U.
An exact proof term for the current goal is (andER (V Tx x V) (V U) HVpack).
We prove the intermediate claim HVFam: V Fam.
An exact proof term for the current goal is (SepI Tx (λW : setW U) V HVTx HVSubU).
An exact proof term for the current goal is (UnionI Fam x V HxV HVFam).
Let x be given.
Assume HxU: x Fam.
Apply (UnionE_impred Fam x HxU (x U)) to the current goal.
Let V be given.
Assume HxV: x V.
Assume HVFam: V Fam.
We prove the intermediate claim HVSubU: V U.
An exact proof term for the current goal is (SepE2 Tx (λW : setW U) V HVFam).
An exact proof term for the current goal is (HVSubU x HxV).
rewrite the current goal using HUeq (from left to right).
An exact proof term for the current goal is HUnionFamIn.