Let G and Tg be given.
Assume H: topological_group G Tg.
An exact proof term for the current goal is (andEL (T1_space G Tg) (∃mult inv e : set, function_on mult (setprod G G) G function_on inv G G e G (∀x y z : set, x Gy Gz Gapply_fun mult (apply_fun mult (x,y),z) = apply_fun mult (x,apply_fun mult (y,z))) (∀x : set, x Gapply_fun mult (e,x) = x apply_fun mult (x,e) = x) (∀x : set, x Gapply_fun mult (x,apply_fun inv x) = e apply_fun mult (apply_fun inv x,x) = e) continuous_map (setprod G G) (product_topology G Tg G Tg) G Tg mult continuous_map G Tg G Tg inv) H).