Let X, Tx, phi and U be given.
rewrite the current goal using Hdef (from left to right).
We prove the intermediate
claim HnzsubU:
nz ⊆ U.
Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ apply_fun phi x0 ≠ 0) x Hx).
We prove the intermediate
claim Hxneq:
apply_fun phi x ≠ 0.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun phi x0 ≠ 0) x Hx).
An exact proof term for the current goal is (HnzSub x HxX Hxneq).
An
exact proof term for the current goal is
(closure_monotone X Tx nz U HTx HnzsubU HUsubX).
∎