Let X, Tx, f and g be given.
Assume HTx: topology_on X Tx.
Assume Hnz: ∀x : set, x Xapply_fun g x 0apply_fun f x 0.
We will prove support_of X Tx g support_of X Tx f.
Set Ag to be the term {xX|apply_fun g x 0}.
Set Af to be the term {xX|apply_fun f x 0}.
We prove the intermediate claim HAgSubAf: Ag Af.
Let x be given.
Assume Hx: x Ag.
We prove the intermediate claim HxX: x X.
An exact proof term for the current goal is (SepE1 X (λz : setapply_fun g z 0) x Hx).
We prove the intermediate claim Hgx: apply_fun g x 0.
An exact proof term for the current goal is (SepE2 X (λz : setapply_fun g z 0) x Hx).
Apply (SepI X (λz : setapply_fun f z 0) x HxX) to the current goal.
An exact proof term for the current goal is (Hnz x HxX Hgx).
We prove the intermediate claim HAfSubX: Af X.
An exact proof term for the current goal is (Sep_Subq X (λz : setapply_fun f z 0)).
We prove the intermediate claim HclMon: closure_of X Tx Ag closure_of X Tx Af.
An exact proof term for the current goal is (closure_monotone X Tx Ag Af HTx HAgSubAf HAfSubX).
An exact proof term for the current goal is HclMon.