Let X, Tx, f and g be given.
We prove the intermediate
claim HAgSubAf:
Ag ⊆ Af.
Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λz : set ⇒ apply_fun g z ≠ 0) x Hx).
We prove the intermediate
claim Hgx:
apply_fun g x ≠ 0.
An
exact proof term for the current goal is
(SepE2 X (λz : set ⇒ apply_fun g z ≠ 0) x Hx).
An exact proof term for the current goal is (Hnz x HxX Hgx).
We prove the intermediate
claim HAfSubX:
Af ⊆ X.
An
exact proof term for the current goal is
(closure_monotone X Tx Ag Af HTx HAgSubAf HAfSubX).
An exact proof term for the current goal is HclMon.
∎