Let X, Tx, Y, U and V be given.
We prove the intermediate
claim HexU:
∃VU ∈ Tx, U = VU ∩ Y.
We prove the intermediate
claim HexV:
∃VV ∈ Tx, V = VV ∩ Y.
Apply HexU to the current goal.
Let VU be given.
Assume HVUpair.
We prove the intermediate
claim HVU:
VU ∈ Tx.
An
exact proof term for the current goal is
(andEL (VU ∈ Tx) (U = VU ∩ Y) HVUpair).
We prove the intermediate
claim HUeq:
U = VU ∩ Y.
An
exact proof term for the current goal is
(andER (VU ∈ Tx) (U = VU ∩ Y) HVUpair).
Apply HexV to the current goal.
Let VV be given.
Assume HVVpair.
We prove the intermediate
claim HVV:
VV ∈ Tx.
An
exact proof term for the current goal is
(andEL (VV ∈ Tx) (V = VV ∩ Y) HVVpair).
We prove the intermediate
claim HVeq:
V = VV ∩ Y.
An
exact proof term for the current goal is
(andER (VV ∈ Tx) (V = VV ∩ Y) HVVpair).
We prove the intermediate
claim HUV:
VU ∩ VV ∈ Tx.
∎