Let X, Tx, Y and V be given.
We prove the intermediate
claim HVsub:
V ∩ Y ⊆ Y.
We prove the intermediate
claim HVpow:
V ∩ Y ∈ 𝒫 Y.
An
exact proof term for the current goal is
(PowerI Y (V ∩ Y) HVsub).
We prove the intermediate
claim Hex:
∃V0 ∈ Tx, (V ∩ Y) = V0 ∩ Y.
We use V to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is HV.
An
exact proof term for the current goal is
(SepI (𝒫 Y) (λU0 : set ⇒ ∃V0 ∈ Tx, U0 = V0 ∩ Y) (V ∩ Y) HVpow Hex).
∎