Let X, Tx, net, sub, x, J, leJ, K, leK and phi be given.
We use K to witness the existential quantifier.
We use leK to witness the existential quantifier.
Apply andI to the current goal.
Apply and6I to the current goal.
An exact proof term for the current goal is HTx.
An exact proof term for the current goal is HdirK.
An exact proof term for the current goal is Hsubtot.
An exact proof term for the current goal is Hsubgraph.
An exact proof term for the current goal is Hsubdom.
An exact proof term for the current goal is HxX.
Let U be given.
We prove the intermediate
claim Hexj0:
∃j0 : set, j0 ∈ J ∧ ∀j : set, j ∈ J → (j0,j) ∈ leJ → apply_fun net j ∈ U.
An exact proof term for the current goal is (Htail U HU HxU).
Apply Hexj0 to the current goal.
Let j0 be given.
Assume Hj0pair.
Apply Hj0pair to the current goal.
Assume Hj0J HafterJ.
We prove the intermediate
claim Hexk0:
∃k0 : set, k0 ∈ K ∧ ∀k : set, k ∈ K → (k0,k) ∈ leK → (j0,apply_fun phi k) ∈ leJ.
Apply Hexk0 to the current goal.
Let k0 be given.
Assume Hk0pack.
We use k0 to witness the existential quantifier.
Apply andI to the current goal.
An
exact proof term for the current goal is
(andEL (k0 ∈ K) (∀k : set, k ∈ K → (k0,k) ∈ leK → (j0,apply_fun phi k) ∈ leJ) Hk0pack).
Let k be given.
We prove the intermediate
claim HphikJ:
apply_fun phi k ∈ J.
We prove the intermediate
claim Hj0phik:
(j0,apply_fun phi k) ∈ leJ.
We prove the intermediate
claim HtailAbove:
∀k1 : set, k1 ∈ K → (k0,k1) ∈ leK → (j0,apply_fun phi k1) ∈ leJ.
An
exact proof term for the current goal is
(andER (k0 ∈ K) (∀k1 : set, k1 ∈ K → (k0,k1) ∈ leK → (j0,apply_fun phi k1) ∈ leJ) Hk0pack).
An exact proof term for the current goal is (HtailAbove k HkK Hk0k).
rewrite the current goal using (Hsubeq k HkK) (from left to right).
An
exact proof term for the current goal is
(HafterJ (apply_fun phi k) HphikJ Hj0phik).
∎