Let net, sub, J, leJ, K, leK, X, phi and j0 be given.
We will
prove ∃k0 : set, k0 ∈ K ∧ ∀k : set, k ∈ K → (k0,k) ∈ leK → (j0,apply_fun phi k) ∈ leJ.
We prove the intermediate
claim Hcofinal:
∀j : set, j ∈ J → ∃k : set, k ∈ K ∧ (j,apply_fun phi k) ∈ leJ.
We prove the intermediate
claim Hmono:
∀i j : set, i ∈ K → j ∈ K → (i,j) ∈ leK → (apply_fun phi i,apply_fun phi j) ∈ leJ.
Apply (Hcofinal j0 Hj0J) to the current goal.
Let k0 be given.
Assume Hk0pair.
We use k0 to witness the existential quantifier.
Apply andI to the current goal.
An
exact proof term for the current goal is
(andEL (k0 ∈ K) ((j0,apply_fun phi k0) ∈ leJ) Hk0pair).
Let k be given.
We prove the intermediate
claim Hj0phi0:
(j0,apply_fun phi k0) ∈ leJ.
An
exact proof term for the current goal is
(andER (k0 ∈ K) ((j0,apply_fun phi k0) ∈ leJ) Hk0pair).
We prove the intermediate
claim Hphi0J:
apply_fun phi k0 ∈ J.
We prove the intermediate
claim HphikJ:
apply_fun phi k ∈ J.
An
exact proof term for the current goal is
(Hmono k0 k (andEL (k0 ∈ K) ((j0,apply_fun phi k0) ∈ leJ) Hk0pair) HkK Hk0k).
∎