We will prove simply_ordered_set (setprod R R).
We will prove setprod R R = R setprod R R = rational_numbers setprod R R = ω setprod R R = ω {0} setprod R R = setprod 2 ω setprod R R = setprod R R ordinal (setprod R R).
Apply orIL to the current goal.
Apply orIR to the current goal.
Use reflexivity.