We will prove simply_ordered_set (setprod 2 ω).
We will prove (setprod 2 ω = R setprod 2 ω = rational_numbers setprod 2 ω = ω setprod 2 ω = ω {0} setprod 2 ω = setprod 2 ω setprod 2 ω = setprod R R ordinal (setprod 2 ω)).
Apply orIL to the current goal.
Apply orIL to the current goal.
Apply orIR to the current goal.
Use reflexivity.