We will prove simply_ordered_set S_Omega.
We will prove S_Omega = R S_Omega = rational_numbers S_Omega = ω S_Omega = ω {0} S_Omega = setprod 2 ω S_Omega = setprod R R ordinal S_Omega.
Apply orIR to the current goal.
An exact proof term for the current goal is (andEL (ordinal S_Omega) (uncountable_set S_Omega) S_Omega_ordinal_uncountable).