Let X and Tx be given.
Assume Hsig: sigma_locally_finite_basis X Tx.
We prove the intermediate claim Hexists: ∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀F : set, F Famslocally_finite_family X Tx F) basis_generates X ( Fams) Tx ∀b : set, b Famsb Tx.
An exact proof term for the current goal is (andER (topology_on X Tx) (∃Fams : set, countable_set Fams Fams 𝒫 (𝒫 X) (∀F : set, F Famslocally_finite_family X Tx F) basis_generates X ( Fams) Tx ∀b : set, b Famsb Tx) Hsig).
An exact proof term for the current goal is Hexists.