Let x be given.
We will
prove x ∈ X ∖ (X ∖ U).
We prove the intermediate
claim HxX:
x ∈ X.
An exact proof term for the current goal is (HUsub x HxU).
We prove the intermediate
claim HxNot:
x ∉ (X ∖ U).
An
exact proof term for the current goal is
((setminusE2 X U x HxXU) HxU).
An
exact proof term for the current goal is
(setminusI X (X ∖ U) x HxX HxNot).
∎