Let X, d, seq and x be given.
Assume H: sequence_converges_metric X d seq x.
We prove the intermediate claim H123: (metric_on X d sequence_on seq X) x X.
An exact proof term for the current goal is (andEL ((metric_on X d sequence_on seq X) x X) (∀eps : set, eps R Rlt 0 eps∃N : set, N ω ∀n : set, n ωN nRlt (apply_fun d (apply_fun seq n,x)) eps) H).
We prove the intermediate claim H12: metric_on X d sequence_on seq X.
An exact proof term for the current goal is (andEL (metric_on X d sequence_on seq X) (x X) H123).
An exact proof term for the current goal is (andER (metric_on X d) (sequence_on seq X) H12).