We will prove ∃B : set, basis_on (setprod R R) B generated_topology (setprod R R) B = R2_dictionary_order_topology.
We use (basis_of_subbasis (setprod R R) (open_rays_subbasis (setprod R R))) to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (finite_intersections_basis_of_subbasis (setprod R R) (open_rays_subbasis (setprod R R)) (open_rays_subbasis_is_subbasis (setprod R R))).
Use reflexivity.