Let X, Tx and f be given.
We prove the intermediate
claim HIposSubR:
Ipos ⊆ R.
Let t be given.
An
exact proof term for the current goal is
(SepE1 R (λx : set ⇒ order_rel R 0 x) t HtIpos).
We prove the intermediate
claim Himg:
∀x : set, x ∈ X → apply_fun f x ∈ Ipos.
Let x be given.
We prove the intermediate
claim HfxR:
apply_fun f x ∈ R.
An exact proof term for the current goal is (Hpos x HxX).
We prove the intermediate
claim Hf_to_pos:
continuous_map X Tx Ipos Tpos f.
∎