We will prove rational_open_intervals_basis R_standard_basis.
Let I be given.
Assume HI: I rational_open_intervals_basis.
Apply (famunionE_impred rational_numbers (λq1 : set{open_interval q1 q2|q2rational_numbers}) I HI (I R_standard_basis)) to the current goal.
Let q1 be given.
Assume Hq1Q HIq1.
Apply (ReplE_impred rational_numbers (λq2 : setopen_interval q1 q2) I HIq1 (I R_standard_basis)) to the current goal.
Let q2 be given.
Assume Hq2Q Heq.
rewrite the current goal using Heq (from left to right).
We prove the intermediate claim Hq1R: q1 R.
An exact proof term for the current goal is (rational_numbers_in_R q1 Hq1Q).
We prove the intermediate claim Hq2R: q2 R.
An exact proof term for the current goal is (rational_numbers_in_R q2 Hq2Q).
We prove the intermediate claim HIq2: open_interval q1 q2 {open_interval q1 b|bR}.
An exact proof term for the current goal is (ReplI R (λb : setopen_interval q1 b) q2 Hq2R).
An exact proof term for the current goal is (famunionI R (λa : set{open_interval a b|bR}) q1 (open_interval q1 q2) Hq1R HIq2).