We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ apply_fun f x0 ∈ U) x HxPreU).
We prove the intermediate
claim HfxU:
apply_fun f x ∈ U.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ U) x HxPreU).
We prove the intermediate
claim HfxUV:
apply_fun f x ∈ U ∪ V.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ apply_fun f x0 ∈ U ∪ V) x HxX HfxUV).