Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ apply_fun f x0 ∈ U ∩ V) x Hx).
We prove the intermediate
claim HfxUV:
apply_fun f x ∈ U ∩ V.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ U ∩ V) x Hx).
We prove the intermediate
claim HfxU:
apply_fun f x ∈ U.
We prove the intermediate
claim HfxV:
apply_fun f x ∈ V.
We prove the intermediate
claim HxPreU:
x ∈ preimage_of X f U.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ apply_fun f x0 ∈ U) x HxX HfxU).
We prove the intermediate
claim HxPreV:
x ∈ preimage_of X f V.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ apply_fun f x0 ∈ V) x HxX HfxV).
Let x be given.
We prove the intermediate
claim HxPreU:
x ∈ preimage_of X f U.
We prove the intermediate
claim HxPreV:
x ∈ preimage_of X f V.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ apply_fun f x0 ∈ U) x HxPreU).
We prove the intermediate
claim HfxU:
apply_fun f x ∈ U.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ U) x HxPreU).
We prove the intermediate
claim HfxV:
apply_fun f x ∈ V.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ V) x HxPreV).
We prove the intermediate
claim HfxUV:
apply_fun f x ∈ U ∩ V.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ apply_fun f x0 ∈ U ∩ V) x HxX HfxUV).
∎