Let x be given.
Let W be given.
Let V be given.
We prove the intermediate
claim HxPre:
x ∈ preimage_of X f V.
rewrite the current goal using HWV (from right to left).
An exact proof term for the current goal is HxW.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ apply_fun f x0 ∈ V) x HxPre).
We prove the intermediate
claim HfxV:
apply_fun f x ∈ V.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ V) x HxPre).
We prove the intermediate
claim HfxU:
apply_fun f x ∈ ⋃ Fam.
An
exact proof term for the current goal is
(UnionI Fam (apply_fun f x) V HfxV HVFam).
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ apply_fun f x0 ∈ ⋃ Fam) x HxX HfxU).
∎