Let J, f and j be given.
Assume HjJ: j J.
Assume Hf: f power_real J.
We will prove apply_fun f j R.
We prove the intermediate claim Hfpred: total_function_on f J (space_family_union J (const_space_family J R R_standard_topology)) functional_graph f ∀i0 : set, i0 Japply_fun f i0 space_family_set (const_space_family J R R_standard_topology) i0.
An exact proof term for the current goal is (SepE2 (𝒫 (setprod J (space_family_union J (const_space_family J R R_standard_topology)))) (λf0 : settotal_function_on f0 J (space_family_union J (const_space_family J R R_standard_topology)) functional_graph f0 ∀i0 : set, i0 Japply_fun f0 i0 space_family_set (const_space_family J R R_standard_topology) i0) f Hf).
We prove the intermediate claim Hfcoords: ∀i0 : set, i0 Japply_fun f i0 space_family_set (const_space_family J R R_standard_topology) i0.
An exact proof term for the current goal is (andER (total_function_on f J (space_family_union J (const_space_family J R R_standard_topology)) functional_graph f) (∀i0 : set, i0 Japply_fun f i0 space_family_set (const_space_family J R R_standard_topology) i0) Hfpred).
We prove the intermediate claim HfjSet: apply_fun f j space_family_set (const_space_family J R R_standard_topology) j.
An exact proof term for the current goal is (Hfcoords j HjJ).
rewrite the current goal using (space_family_set_const_space_family J R R_standard_topology j HjJ) (from right to left).
An exact proof term for the current goal is HfjSet.