Let X, A, B, Y, Tx, Ty, f and g be given.
Assume HTx: topology_on X Tx.
Assume HA: A Tx.
Assume HB: B Tx.
Assume Hdisj: A B = Empty.
Assume Hdomf: graph_domain_subset f A.
Assume Hdomg: graph_domain_subset g B.
Assume Hfunf: functional_graph f.
Assume Hfung: functional_graph g.
Assume Hf: continuous_map_total A (subspace_topology X Tx A) Y Ty f.
Assume Hg: continuous_map_total B (subspace_topology X Tx B) Y Ty g.
We will prove continuous_map (A B) (subspace_topology X Tx (A B)) Y Ty (f g).
We prove the intermediate claim Htot: continuous_map_total (A B) (subspace_topology X Tx (A B)) Y Ty (f g).
An exact proof term for the current goal is (pasting_lemma_total_functional X A B Y Tx Ty f g HTx HA HB Hdisj Hdomf Hdomg Hfunf Hfung Hf Hg).
An exact proof term for the current goal is (continuous_map_total_imp (A B) (subspace_topology X Tx (A B)) Y Ty (f g) Htot).