Let X, Tx, U, V and P be given.
We prove the intermediate
claim HDV:
∀f : set, f ∈ P → ∃v : set, v ∈ V ∧ support_of X Tx f ⊆ v.
We prove the intermediate
claim HdomU:
∀f : set, f ∈ P → ∃u : set, u ∈ U ∧ support_of X Tx f ⊆ u.
Let f be given.
Apply (HDV f HfP) to the current goal.
Let v be given.
We prove the intermediate
claim HvV:
v ∈ V.
An
exact proof term for the current goal is
(andEL (v ∈ V) (support_of X Tx f ⊆ v) Hv).
We prove the intermediate
claim Hsuppsubv:
support_of X Tx f ⊆ v.
An
exact proof term for the current goal is
(andER (v ∈ V) (support_of X Tx f ⊆ v) Hv).
Apply (Href v HvV) to the current goal.
Let u be given.
We use u to witness the existential quantifier.
Apply andI to the current goal.
An
exact proof term for the current goal is
(andEL (u ∈ U) (v ⊆ u) Hu).
We will
prove P ⊆ function_space X R ∧ (∀f : set, f ∈ P → continuous_map X Tx R R_standard_topology f) ∧ (∀f x : set, f ∈ P → x ∈ X → apply_fun f x ∈ unit_interval) ∧ (∀f : set, f ∈ P → ∃u : set, u ∈ U ∧ support_of X Tx f ⊆ u) ∧ (∀x : set, x ∈ X → ∃N : set, N ∈ Tx ∧ x ∈ N ∧ ∃F0 : set, finite F0 ∧ F0 ⊆ P ∧ ∀f : set, f ∈ P → support_of X Tx f ∩ N ≠ Empty → f ∈ F0) ∧ (∀x : set, x ∈ X → ∃F : set, finite F ∧ F ⊆ P ∧ (∀f : set, f ∈ P → apply_fun f x ≠ 0 → f ∈ F) ∧ ∃n : set, n ∈ ω ∧ ∃e : set, bijection n F e ∧ ∃p : set, function_on p (ordsucc n) R ∧ apply_fun p Empty = 0 ∧ (∀k : set, k ∈ n → apply_fun p (ordsucc k) = add_SNo (apply_fun p k) (apply_fun (apply_fun e k) x)) ∧ apply_fun p n = 1).
Apply and6I to the current goal.
An exact proof term for the current goal is HA.
An exact proof term for the current goal is HB.
An exact proof term for the current goal is HC.
An exact proof term for the current goal is HdomU.
An exact proof term for the current goal is HE.
An exact proof term for the current goal is HF.
∎