Let J and le be given.
Assume Hpo: partial_order_on J le.
We will prove ∀a b c : set, a Jb Jc J(a,b) le(b,c) le(a,c) le.
Let a, b and c be given.
Assume HaJ: a J.
Assume HbJ: b J.
Assume HcJ: c J.
Assume Hab: (a,b) le.
Assume Hbc: (b,c) le.
We prove the intermediate claim Hleft: ((relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0)).
An exact proof term for the current goal is (andEL ((relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0)) (∀a0 b0 c0 : set, a0 Jb0 Jc0 J(a0,b0) le(b0,c0) le(a0,c0) le) Hpo).
We prove the intermediate claim Htrans: ∀a0 b0 c0 : set, a0 Jb0 Jc0 J(a0,b0) le(b0,c0) le(a0,c0) le.
An exact proof term for the current goal is (andER ((relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0)) (∀a0 b0 c0 : set, a0 Jb0 Jc0 J(a0,b0) le(b0,c0) le(a0,c0) le) Hpo).
An exact proof term for the current goal is (Htrans a b c HaJ HbJ HcJ Hab Hbc).