Let J and le be given.
Assume Hpo: partial_order_on J le.
We will prove ∀a : set, a J(a,a) le.
Let a be given.
Assume HaJ: a J.
We prove the intermediate claim Htmp: (relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0).
An exact proof term for the current goal is (andEL ((relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0)) (∀a0 b0 c0 : set, a0 Jb0 Jc0 J(a0,b0) le(b0,c0) le(a0,c0) le) Hpo).
We prove the intermediate claim Hrelrefl: relation_on le J (∀a0 : set, a0 J(a0,a0) le).
An exact proof term for the current goal is (andEL (relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0) Htmp).
We prove the intermediate claim Hrefl: ∀a0 : set, a0 J(a0,a0) le.
An exact proof term for the current goal is (andER (relation_on le J) (∀a0 : set, a0 J(a0,a0) le) Hrelrefl).
An exact proof term for the current goal is (Hrefl a HaJ).