Let J and le be given.
Assume Hpo: partial_order_on J le.
We will prove ∀a b : set, a Jb J(a,b) le(b,a) lea = b.
Let a and b be given.
Assume HaJ: a J.
Assume HbJ: b J.
Assume Hab: (a,b) le.
Assume Hba: (b,a) le.
We prove the intermediate claim Htmp: (relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0).
An exact proof term for the current goal is (andEL ((relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0)) (∀a0 b0 c0 : set, a0 Jb0 Jc0 J(a0,b0) le(b0,c0) le(a0,c0) le) Hpo).
We prove the intermediate claim Hantisym: ∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0.
An exact proof term for the current goal is (andER (relation_on le J (∀a0 : set, a0 J(a0,a0) le)) (∀a0 b0 : set, a0 Jb0 J(a0,b0) le(b0,a0) lea0 = b0) Htmp).
An exact proof term for the current goal is (Hantisym a b HaJ HbJ Hab Hba).