Let X, Tx, C and eps be given.
Assume Hpara: paracompact_space X Tx.
Assume HH: Hausdorff_space X Tx.
Assume Hloc: locally_finite_family X Tx C.
Assume HCsubPow: C 𝒫 X.
Assume Heps: ∀c : set, c Capply_fun eps c R Rlt 0 (apply_fun eps c).
We will prove ∃f : set, continuous_map X Tx R R_standard_topology f (∀x : set, x XRlt 0 (apply_fun f x)) (∀c x : set, c Cx cRle (apply_fun f x) (apply_fun eps c)).
We prove the intermediate claim Hnorm: normal_space X Tx.
An exact proof term for the current goal is (paracompact_Hausdorff_normal X Tx Hpara HH).
We prove the intermediate claim HTx: topology_on X Tx.
An exact proof term for the current goal is (andEL (topology_on X Tx) (∀x : set, x X∃N : set, N Tx x N ∃S : set, finite S S C ∀A : set, A CA N EmptyA S) Hloc).
An exact proof term for the current goal is (paracompact_Hausdorff_locally_finite_bounded_function_aux X Tx C eps Hpara HH Hloc HCsubPow Heps Hnorm HTx).