We will prove basis_on Ή (order_topology_basis Ή).
We will prove ((order_topology_basis Ή ⊆ đ’Ģ Ή) ∧ (∀x ∈ Ή, ∃b ∈ (order_topology_basis Ή), x ∈ b)) ∧ (∀b1 ∈ (order_topology_basis Ή), ∀b2 ∈ (order_topology_basis Ή), ∀x : set, x ∈ b1 → x ∈ b2 → ∃b3 ∈ (order_topology_basis Ή), x ∈ b3 ∧ b3 ⊆ b1 ∊ b2).
Apply andI to the current goal.
We will prove (order_topology_basis Ή ⊆ đ’Ģ Ή) ∧ (∀x ∈ Ή, ∃b ∈ (order_topology_basis Ή), x ∈ b).
Apply andI to the current goal.
Let I be given.
We will prove I ∈ đ’Ģ Ή.
Set B to be the term {I0 ∈ đ’Ģ Ή|∃b0 ∈ Ή, I0 = {y ∈ Ή|order_rel Ή y b0}}.
Set C to be the term {I0 ∈ đ’Ģ Ή|∃a ∈ Ή, I0 = {y ∈ Ή|order_rel Ή a y}}.
Set Bold to be the term (A âˆĒ B âˆĒ C).
Apply (binunionE Bold {Ή} I HI) to the current goal.
Assume HI': I ∈ Bold.
Apply (binunionE (A âˆĒ B) C I HI') to the current goal.
Assume HIAB: I ∈ (A âˆĒ B).
Apply (binunionE A B I HIAB) to the current goal.
Assume HIA: I ∈ A.
An exact proof term for the current goal is (SepE1 (đ’Ģ Ή) (ÎģI0 : set ⇒ ∃a ∈ Ή, ∃b0 ∈ Ή, I0 = {y ∈ Ή|order_rel Ή a y ∧ order_rel Ή y b0}) I HIA).
Assume HIB: I ∈ B.
An exact proof term for the current goal is (SepE1 (đ’Ģ Ή) (ÎģI0 : set ⇒ ∃b0 ∈ Ή, I0 = {y ∈ Ή|order_rel Ή y b0}) I HIB).
Assume HIC: I ∈ C.
An exact proof term for the current goal is (SepE1 (đ’Ģ Ή) (ÎģI0 : set ⇒ ∃a ∈ Ή, I0 = {y ∈ Ή|order_rel Ή a y}) I HIC).
Assume HIomega: I ∈ {Ή}.
We prove the intermediate claim HeqI: I = Ή.
An exact proof term for the current goal is (SingE Ή I HIomega).
rewrite the current goal using HeqI (from left to right).
An exact proof term for the current goal is (Self_In_Power Ή).
Let x be given.
Assume Hx: x ∈ Ή.
We use {x} to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (singleton_in_order_topology_basis_omega x Hx).
An exact proof term for the current goal is (SingI x).
Let b1 be given.
Assume Hb1: b1 ∈ order_topology_basis Ή.
Let b2 be given.
Assume Hb2: b2 ∈ order_topology_basis Ή.
Let x be given.
Assume Hx1: x ∈ b1.
Assume Hx2: x ∈ b2.
We will prove ∃b3 ∈ order_topology_basis Ή, x ∈ b3 ∧ b3 ⊆ b1 ∊ b2.
We prove the intermediate claim Hb1pow: b1 ∈ đ’Ģ Ή.
Set B to be the term {I0 ∈ đ’Ģ Ή|∃b0 ∈ Ή, I0 = {y ∈ Ή|order_rel Ή y b0}}.
Set C to be the term {I0 ∈ đ’Ģ Ή|∃a ∈ Ή, I0 = {y ∈ Ή|order_rel Ή a y}}.
Set Bold to be the term (A âˆĒ B âˆĒ C).
Apply (binunionE Bold {Ή} b1 Hb1) to the current goal.
Assume Hb1U: b1 ∈ Bold.
Apply (binunionE (A âˆĒ B) C b1 Hb1U) to the current goal.
Assume Hb1AB: b1 ∈ (A âˆĒ B).
Apply (binunionE A B b1 Hb1AB) to the current goal.
Assume Hb1A: b1 ∈ A.
An exact proof term for the current goal is (SepE1 (đ’Ģ Ή) (ÎģI0 : set ⇒ ∃a ∈ Ή, ∃b0 ∈ Ή, I0 = {y ∈ Ή|order_rel Ή a y ∧ order_rel Ή y b0}) b1 Hb1A).
Assume Hb1B: b1 ∈ B.
An exact proof term for the current goal is (SepE1 (đ’Ģ Ή) (ÎģI0 : set ⇒ ∃b0 ∈ Ή, I0 = {y ∈ Ή|order_rel Ή y b0}) b1 Hb1B).
Assume Hb1C: b1 ∈ C.
An exact proof term for the current goal is (SepE1 (đ’Ģ Ή) (ÎģI0 : set ⇒ ∃a ∈ Ή, I0 = {y ∈ Ή|order_rel Ή a y}) b1 Hb1C).
Assume Hb1omega: b1 ∈ {Ή}.
We prove the intermediate claim Hb1eq: b1 = Ή.
An exact proof term for the current goal is (SingE Ή b1 Hb1omega).
rewrite the current goal using Hb1eq (from left to right).
An exact proof term for the current goal is (Self_In_Power Ή).
We prove the intermediate claim Hb1sub: b1 ⊆ Ή.
An exact proof term for the current goal is (PowerE Ή b1 Hb1pow).
We prove the intermediate claim Hxomega: x ∈ Ή.
An exact proof term for the current goal is (Hb1sub x Hx1).
We use {x} to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (singleton_in_order_topology_basis_omega x Hxomega).
Apply andI to the current goal.
An exact proof term for the current goal is (SingI x).
We will prove {x} ⊆ b1 ∩ b2.
Let y be given.
Assume Hy: y ∈ {x}.
We prove the intermediate claim Heq: y = x.
An exact proof term for the current goal is (SingE x y Hy).
rewrite the current goal using Heq (from left to right).
An exact proof term for the current goal is (binintersectI b1 b2 x Hx1 Hx2).
∎