Let a1, a2, b1 and b2 be given.
Assume Hdisj.
We will prove order_rel (setprod R R) (a1,a2) (b1,b2).
We will prove (setprod R R = R Rlt (a1,a2) (b1,b2)) (setprod R R = rational_numbers Rlt (a1,a2) (b1,b2)) (setprod R R = ω (a1,a2) (b1,b2)) (setprod R R = ω {0} (a1,a2) (b1,b2)) (setprod R R = setprod 2 ω ∃i m j n : set, i 2 m ω j 2 n ω (a1,a2) = (i,m) (b1,b2) = (j,n) (i j (i = j m n))) (setprod R R = setprod R R ∃c1 c2 d1 d2 : set, (a1,a2) = (c1,c2) (b1,b2) = (d1,d2) (Rlt c1 d1 (c1 = d1 Rlt c2 d2))) (ordinal (setprod R R) setprod R R R setprod R R rational_numbers setprod R R setprod 2 ω setprod R R setprod R R (a1,a2) (b1,b2)).
Apply orIL to the current goal.
Apply orIR to the current goal.
We will prove setprod R R = setprod R R ∃c1 c2 d1 d2 : set, (a1,a2) = (c1,c2) (b1,b2) = (d1,d2) (Rlt c1 d1 (c1 = d1 Rlt c2 d2)).
Apply andI to the current goal.
Use reflexivity.
We use a1 to witness the existential quantifier.
We use a2 to witness the existential quantifier.
We use b1 to witness the existential quantifier.
We use b2 to witness the existential quantifier.
We will prove (a1,a2) = (a1,a2) (b1,b2) = (b1,b2) (Rlt a1 b1 (a1 = b1 Rlt a2 b2)).
Apply andI to the current goal.
Apply andI to the current goal.
Use reflexivity.
Use reflexivity.
An exact proof term for the current goal is Hdisj.