Let k and n be given.
Assume HkOmega.
Assume HnOmega.
We will prove order_rel (setprod 2 ω) (0,k) (1,n).
We will prove (setprod 2 ω = R Rlt (0,k) (1,n)) (setprod 2 ω = rational_numbers Rlt (0,k) (1,n)) (setprod 2 ω = ω (0,k) (1,n)) (setprod 2 ω = ω {0} (0,k) (1,n)) (setprod 2 ω = setprod 2 ω ∃i m j n0 : set, i 2 m ω j 2 n0 ω (0,k) = (i,m) (1,n) = (j,n0) (i j (i = j m n0))) (setprod 2 ω = setprod R R ∃a1 a2 b1 b2 : set, (0,k) = (a1,a2) (1,n) = (b1,b2) (Rlt a1 b1 (a1 = b1 Rlt a2 b2))) (ordinal (setprod 2 ω) setprod 2 ω R setprod 2 ω rational_numbers setprod 2 ω setprod 2 ω setprod 2 ω setprod R R (0,k) (1,n)).
Apply orIL to the current goal.
Apply orIL to the current goal.
Apply orIR to the current goal.
We will prove setprod 2 ω = setprod 2 ω ∃i m j n0 : set, i 2 m ω j 2 n0 ω (0,k) = (i,m) (1,n) = (j,n0) (i j (i = j m n0)).
Apply andI to the current goal.
Use reflexivity.
We use 0 to witness the existential quantifier.
We use k to witness the existential quantifier.
We use 1 to witness the existential quantifier.
We use n to witness the existential quantifier.
We prove the intermediate claim Heq0k: (0,k) = (0,k).
Use reflexivity.
We prove the intermediate claim Heq1n: (1,n) = (1,n).
Use reflexivity.
We prove the intermediate claim H12: 0 2 k ω.
An exact proof term for the current goal is (andI (0 2) (k ω) In_0_2 HkOmega).
We prove the intermediate claim H123: (0 2 k ω) 1 2.
An exact proof term for the current goal is (andI (0 2 k ω) (1 2) H12 In_1_2).
We prove the intermediate claim H1234: ((0 2 k ω) 1 2) n ω.
An exact proof term for the current goal is (andI ((0 2 k ω) 1 2) (n ω) H123 HnOmega).
We prove the intermediate claim H12345: (((0 2 k ω) 1 2) n ω) (0,k) = (0,k).
An exact proof term for the current goal is (andI (((0 2 k ω) 1 2) n ω) ((0,k) = (0,k)) H1234 Heq0k).
We prove the intermediate claim H123456: ((((0 2 k ω) 1 2) n ω) (0,k) = (0,k)) (1,n) = (1,n).
An exact proof term for the current goal is (andI ((((0 2 k ω) 1 2) n ω) (0,k) = (0,k)) ((1,n) = (1,n)) H12345 Heq1n).
We prove the intermediate claim Hlex: 0 1 (0 = 1 k n).
An exact proof term for the current goal is (orIL (0 1) (0 = 1 k n) In_0_1).
Apply andI to the current goal.
An exact proof term for the current goal is H123456.
An exact proof term for the current goal is Hlex.