Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
We prove the intermediate
claim Hax:
order_rel X a x.
We prove the intermediate
claim Hxb:
order_rel X x b.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ order_rel X a x0) x HxX Hax).
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ order_rel X x0 b) x HxX Hxb).