Let x be given.
We prove the intermediate
claim HxR:
x ∈ R.
We prove the intermediate
claim Hax:
order_rel R a x.
We prove the intermediate
claim Hxb:
order_rel R x b.
We prove the intermediate
claim Haxlt:
Rlt a x.
We prove the intermediate
claim Hxblt:
Rlt x b.
An
exact proof term for the current goal is
(SepI R (λx0 : set ⇒ Rlt a x0 ∧ Rlt x0 b) x HxR (andI (Rlt a x) (Rlt x b) Haxlt Hxblt)).
Let x be given.
We prove the intermediate
claim HxR:
x ∈ R.
An
exact proof term for the current goal is
(SepE1 R (λx0 : set ⇒ Rlt a x0 ∧ Rlt x0 b) x Hx).
We prove the intermediate
claim Hconj:
Rlt a x ∧ Rlt x b.
An
exact proof term for the current goal is
(SepE2 R (λx0 : set ⇒ Rlt a x0 ∧ Rlt x0 b) x Hx).
We prove the intermediate
claim Hax:
Rlt a x.
An
exact proof term for the current goal is
(andEL (Rlt a x) (Rlt x b) Hconj).
We prove the intermediate
claim Hxb:
Rlt x b.
An
exact proof term for the current goal is
(andER (Rlt a x) (Rlt x b) Hconj).
We prove the intermediate
claim Haxrel:
order_rel R a x.
We prove the intermediate
claim Hxbrel:
order_rel R x b.
∎