Let x be given.
Assume HxU.
We prove the intermediate
claim Hexb:
∃b ∈ B, x ∈ b ∧ b ⊆ U.
An exact proof term for the current goal is (HUprop x HxU).
Apply Hexb to the current goal.
Let b be given.
Assume Hbpair.
We prove the intermediate
claim HbB:
b ∈ B.
An
exact proof term for the current goal is
(andEL (b ∈ B) (x ∈ b ∧ b ⊆ U) Hbpair).
We prove the intermediate
claim Hbprop:
x ∈ b ∧ b ⊆ U.
An
exact proof term for the current goal is
(andER (b ∈ B) (x ∈ b ∧ b ⊆ U) Hbpair).
We prove the intermediate
claim Hxb:
x ∈ b.
An
exact proof term for the current goal is
(andEL (x ∈ b) (b ⊆ U) Hbprop).
We prove the intermediate
claim HbsubU:
b ⊆ U.
An
exact proof term for the current goal is
(andER (x ∈ b) (b ⊆ U) Hbprop).
We prove the intermediate
claim HbFam:
b ∈ Fam.
An
exact proof term for the current goal is
(SepI B (λb0 : set ⇒ b0 ⊆ U) b HbB HbsubU).
An
exact proof term for the current goal is
(UnionI Fam x b Hxb HbFam).