Let X and b be given.
Assume HbX.
We prove the intermediate
claim HUpow:
U â đĢ X.
Apply PowerI to the current goal.
Let x be given.
An
exact proof term for the current goal is
(SepE1 X (Îģx0 : set â order_rel X x0 b) x HxU).
We use b to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is HbX.
An
exact proof term for the current goal is
(SepI (đĢ X) (ÎģI0 : set â âb0 â X, I0 = {x â X|order_rel X x b0}) U HUpow HUex).
We prove the intermediate
claim HUold:
U â Bold.
An
exact proof term for the current goal is
(binunionI1 Bold {X} U HUold).
â