Let X, Tx, A and N be given.
We prove the intermediate
claim Hexx:
∃x : set, x ∈ (N ∩ closure_of X Tx A).
Apply Hexx to the current goal.
Let x be given.
We prove the intermediate
claim HxN:
x ∈ N.
We prove the intermediate
claim HxClA:
x ∈ closure_of X Tx A.
We prove the intermediate
claim HclCond:
∀U : set, U ∈ Tx → x ∈ U → U ∩ A ≠ Empty.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ ∀U : set, U ∈ Tx → x0 ∈ U → U ∩ A ≠ Empty) x HxClA).
An exact proof term for the current goal is (HclCond N HNopen HxN).
∎